Due 3/9/12

1. Consider the following LP problem (P):

$$
\begin{aligned}
& \min z=-5 x_{1}+3 x_{2}-6 x_{3}+x_{4}+0 x_{5}+0 x_{6}+0 x_{7} \\
& \text { s.t. } 3 x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}+0 x_{6}+0 x_{7}
\end{aligned}=9, ~ \begin{aligned}
& \\
& x_{1}+x_{2}+x_{3}+x_{4}+0 x_{5}+x_{6}+0 x_{7}=4 \\
& 4 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+0 x_{5}+0 x_{6}+x_{7}=15 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0
\end{aligned}
$$

(a) Let the current basis consist of $\left\{x_{1}, x_{3}, x_{7}\right\}$. Verify that the associated basis matrix B can be written as $E_{1} E_{2}$ where

$$
E_{1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(b) Using the eta factorization, calculate the current basic feasible solution $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{7}\right)$.
(c) Using the eta factorization, solve for the associated dual variables u and use these to compute the reduced costs.
(d) Which variable should be chosen to enter the current basis? Determine the leaving variable by first computing d_{B} using the eta factorization.
(e) Determine the next eta matrix E_{3} in the factorization and verify that $E_{1} E_{2} E_{3}$ gives the new basis matrix.
(f) Using the new eta factorization, determine whether this new basis is optimal.

