MthSc 440/640 Problem Set \#9

Due 4/20/12

1. In the network shown below, let T be the tree defined by the arcs in bold.

Answer all parts independently of one another.
(a) Directly verify that T is a shortest path tree with origin node 1 ; clearly show your calculations. [Do not simply solve this from scratch as a shortest path problem by some standard algorithm.]
(b) Suppose that all arc costs remain the same except the cost c_{32} of arc (3,2). Determine the largest range on c_{32} so that T remains a shortest path tree from node 1 . Clearly indicate your reasoning.
(c) Suppose that the cost on arc $(2,5)$ increases to 4 and all other arcs retain their original cost.

Using the same tree T defined above, compute the new node labels and use these to verify whether T is a shortest path tree from node 1. If not, continue the label-correcting algorithm to find the new shortest path tree. [At each step, show the new tree and new node labels. Break any ties by selecting arcs with the most negative reduced cost.]

