Feasibility and Optimality

Feasibility:

$$\mathbf{x}_B = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_N.$$

Selecting $\mathbf{x}_N = \mathbf{0}$ gives the **basic solution**

$$\left[\begin{array}{c} \mathbf{x}_B\\ \mathbf{x}_N \end{array}\right] = \left[\begin{array}{c} B^{-1}\mathbf{b}\\ \mathbf{0} \end{array}\right].$$

If $B^{-1}\mathbf{b} \ge \mathbf{0}$, this defines a **basic feasible solution**.

Optimality:

$$z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T B^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N) \mathbf{x}_N.$$

If $(\mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N) \ge \mathbf{0}$, we have an **optimal solution**.

For the casting example, $\mathbf{c}^T = [28, 30, 20, 25, 0, 0]$ with the constraint matrix A and the right hand side vector **b** given by

$$A = \begin{bmatrix} 3 & 2 & 1 & 4 & 1 & 0 \\ 4 & 3 & 3 & 3 & 0 & -1 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 7 \\ 8 \\ 3 \end{bmatrix}.$$

Consider the basis $B = [\mathbf{a}_3, \mathbf{a}_5, \mathbf{a}_6]$. Thus

$$B = \begin{bmatrix} 1 & 1 & 0 \\ 3 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 3 \end{bmatrix}, \mathbf{x}_B = B^{-1}\mathbf{b} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix},$$

so this defines a feasible basis.

Express the basic variables in terms of the nonbasic variables:

$$\mathbf{x}_B = B^{-1}\mathbf{b} - B^{-1}N\mathbf{x}_N$$

or,

x_3	=	3	$-x_1$	$-x_2$	$-x_4 \geq 0$
x_5	=	4	$-2x_{1}$	$-x_2$	$-3x_4 \ge 0$
x_6	=	1	$+x_{1}$		≥ 0

These inequalities can be rewritten as

x_1	+	x_2	+	x_4	≤ 3
$2x_1$	+	x_2	+	$3x_4$	≤ 4
$-x_1$					≤ 1

with x_3, x_5, x_6 acting as slack variables for these inequalities. Notice that the origin $x_1 = 0, x_2 = 0, x_4 = 0$ is feasible to this inequality system. Moreover we can express the objective function in terms of the nonbasic variables using

$$z = \mathbf{c}^T \mathbf{x} = \mathbf{c}_B^T B^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N) \mathbf{x}_N.$$

Here $\mathbf{c}_B^T = [c_3, c_5, c_6] = [20, 0, 0], \ \mathbf{c}_N^T = [c_1, c_2, c_4] = [28, 30, 25]$ so that $\mathbf{c}_B^T B^{-1} = [0, 0, 20]$. Also, $N = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4]$. Substituting into the above expression gives

$$z = \mathbf{c}_B^T B^{-1} \mathbf{b} + (\mathbf{c}_N^T - \mathbf{c}_B^T B^{-1} N) \mathbf{x}_N = 60 + 8x_1 + 10x_2 + 5x_4$$

In other words, we have transformed the original system into the equivalent inequality system

where the new origin $x_1 = 0, x_2 = 0, x_4 = 0$ is not only feasible but clearly optimal!