Feasibility and Optimality

Feasibility:

$$
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} N \mathbf{x}_{N} .
$$

Selecting $\mathbf{x}_{N}=\mathbf{0}$ gives the basic solution

$$
\left[\begin{array}{l}
\mathbf{x}_{B} \\
\mathbf{x}_{N}
\end{array}\right]=\left[\begin{array}{l}
B^{-1} \mathbf{b} \\
\mathbf{0}
\end{array}\right] .
$$

If $B^{-1} \mathbf{b} \geq \mathbf{0}$, this defines a basic feasible solution.

Optimality:

$$
z=\mathbf{c}^{T} \mathbf{x}=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} N\right) \mathbf{x}_{N}
$$

If $\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} N\right) \geq \mathbf{0}$, we have an optimal solution.
For the casting example, $\mathbf{c}^{T}=[28,30,20,25,0,0]$ with the constraint matrix A and the right hand side vector \mathbf{b} given by

$$
A=\left[\begin{array}{rrrrrr}
3 & 2 & 1 & 4 & 1 & 0 \\
4 & 3 & 3 & 3 & 0 & -1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{l}
7 \\
8 \\
3
\end{array}\right]
$$

Consider the basis $B=\left[\mathbf{a}_{3}, \mathbf{a}_{5}, \mathbf{a}_{6}\right]$. Thus

$$
B=\left[\begin{array}{rrr}
1 & 1 & 0 \\
3 & 0 & -1 \\
1 & 0 & 0
\end{array}\right], B^{-1}=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & -1 \\
0 & -1 & 3
\end{array}\right], \quad \mathbf{x}_{B}=B^{-1} \mathbf{b}=\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]
$$

so this defines a feasible basis.
Express the basic variables in terms of the nonbasic variables:

$$
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} N \mathbf{x}_{N}
$$

or,

$$
\begin{array}{rlrrr}
x_{3}=3 & -x_{1} & -x_{2} & -x_{4} \geq 0 \\
x_{5} & =4 & -2 x_{1} & -x_{2} & -3 x_{4} \geq 0 \\
x_{6} & =1 & +x_{1} & & \geq 0
\end{array}
$$

These inequalities can be rewritten as

$$
\begin{aligned}
& x_{1}+x_{2}+x_{4} \leq 3 \\
& 2 x_{1}+x_{2}+3 x_{4} \leq 4 \\
&-x_{1}
\end{aligned}
$$

with x_{3}, x_{5}, x_{6} acting as slack variables for these inequalities. Notice that the origin $x_{1}=0, x_{2}=0, x_{4}=0$ is feasible to this inequality system. Moreover we can express the objective function in terms of the nonbasic variables using

$$
z=\mathbf{c}^{T} \mathbf{x}=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} N\right) \mathbf{x}_{N}
$$

Here $\mathbf{c}_{B}^{T}=\left[c_{3}, c_{5}, c_{6}\right]=[20,0,0], \mathbf{c}_{N}^{T}=\left[c_{1}, c_{2}, c_{4}\right]=[28,30,25]$ so that $\mathbf{c}_{B}^{T} B^{-1}=[0,0,20]$. Also, $N=\left[\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{4}\right]$. Substituting into the above expression gives

$$
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} N\right) \mathbf{x}_{N}=60+8 x_{1}+10 x_{2}+5 x_{4}
$$

In other words, we have transformed the original system into the equivalent inequality system

$$
\begin{array}{rrrl}
\min & 8 x_{1} & +10 x_{2}+5 x_{4} & \\
\text { s.t. } & x_{1}+x_{2}+x_{4} & \leq 3 \\
& 2 x_{1}+x_{2}+3 x_{4} & \leq 4 \\
& & \leq 1 \\
& -x_{1} \\
& x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{4} \geq 0
\end{array}
$$

where the new origin $x_{1}=0, x_{2}=0, x_{4}=0$ is not only feasible but clearly optimal!

