Review for Test 2

1. Branching Processes

 P_0, P_1, P_2, \ldots probabilities of *i* offspring; $\mu = \sum n P_n$ X_n is the number of individuals at generation *n*; $X_0 = 1$ want probability π_0 of extinction if $\mu \leq 1$ then $\pi_0 = 1$; otherwise ($\mu > 1$) then π_0 is the smallest positive root of the equation $x = P_0 + P_1 x + P_2 x^2 + \cdots$

2. Exponential Distribution

 $f(x) = \lambda e^{-\lambda x}, x > 0; \ \overline{F}(x) = P(X > x) = e^{-\lambda x}; E[X] = 1/\lambda$ memoryless property, constant failure rate λ sum of n exponential(λ) variables is a Gamma (n, λ) minimum of X_1, X_2, \ldots, X_n is exponential $(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$ $P(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$

3. Poisson Process

N(t) is the number of events occurring in (0,t); λ is the average number of events per unit time independent and stationary increments, N(t) is $Poisson(\lambda t)$ interarrival times T_i are all exponential(λ) waiting time $S_n = T_1 + \cdots + T_n$ is $Gamma(n,\lambda)$ modified Poisson (filtered by probability p) nonhomogeneous Poisson (with parameter m defined by $\int \lambda(t) dt$) $P(S_n^A < S_m^B)$

4. CTMC

state X(t), Markov property parameters v_i , P_{ij} , transition rates $q_{ij} = v_i P_{ij}$ examples: Poisson process, birth-death process, queues $P_{ij}(t)$ governed by the Chapman-Kolmogorov equations and (forward) Kolmogorov differential equations limiting probabilities found by solving steady-state equations sufficient conditions for existence interpretations

use limiting probabilities P_i to answer questions about system