Review for Final

1. Probability Concepts

conditional probabilities Bayes' formula independence

2. Random Variables

standard distributions binomial, geometric, Poisson, exponential, gamma expected value, variance moment generating function found using conditioning

3. Markov Chains

formulation of models, state transition diagram transition probabilities, higher-order transition probabilities absolute probabilities classification of states (recurrent, transient, periodic) limiting, stationary probabilities supporting theorems gambler's ruin branching processes

4. Exponential Distribution

 $f(x) = \lambda e^{-\lambda x}, x > 0; \ \overline{F}(x) = e^{-\lambda x}; E[X] = 1/\lambda$ memoryless property, constant failure rate λ sum of n exponential(λ) variables is a Gamma (n, λ) minimum of X_1, X_2, \ldots, X_n is exponential $(\lambda_1 + \lambda_2 + \cdots + \lambda_n)$ $P(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$

5. Poisson Process

N(t) is the number of events occurring in (0,t); λ is the average number of events per unit time independent and stationary increments, N(t) is $Poisson(\lambda t)$ interarrival times T_i are all exponential (λ) waiting time $S_n = T_1 + \cdots + T_n$ is $Gamma(n,\lambda)$ modified Poisson (filtered by probability p) nonhomogeneous Poisson (with parameter m defined by $\int \lambda(t) dt$) $P(S_n^A < S_m^B)$

6. CTMC

state X(t), Markov property parameters v_i , P_{ij} , transition rates $q_{ij} = v_i P_{ij}$ $P_{ij}(t)$ governed by the Chapman-Kolmogorov equations and (forward) Kolmogorov differential equations limiting probabilities found by solving steady-state equations sufficient conditions for existence simplified solution for birth-death processes use limiting probabilities P_j to answer questions about system

7. Queues

M|M|1, M|M|k: Poisson arrivals, exponential service times no queue, maximum queue size, unlimited queue size important quantities

servers busy, servers free L, L_Q, W, W_Q Little's law: $L = \lambda_a W, L_Q = \lambda_a W_Q$