
MthSc 816 Problem #1 Due 2/3/11

In this assignment, you will develop data structures and associated code to read in an undirected
graph G (given in edge list format), set up a linked adjacency structure for G, and carry out the
graph operation of “coalescing” two distinct nodes. Specifically, to coalesce nodes v and w into a
new node x, we replace the two nodes by a new node x in which node x is adjacent to any node
that either v or w (or both) was adjacent to in the original graph G = (N, E). The resulting graph
Gvw should have no loops or multiple edges.

Input Data: Assume that the node set N ⊆ {1, 2, … , n}, with n denoting the largest node
number appearing. The graphinput file will have as its first record n, and succeeding records
will give G in edge list form {(FROM, TO)}, with no particular order to the edges. The
mergenodes file will contain pairs of nodes v and w to be coalesced. For simplicity, let the node
resulting from merging v and w be the numerically smaller of {v, w}. This file can contain
several node pairs, so the coalescing operation should be done sequentially in the order given.

1. Using your language of choice, write a procedure SETUP to read graphinput and set up an
appropriate linked adjacency structure for G. Do not use special functions built into the language.

2. Develop any auxiliary data structures to efficiently carry out the coalescing operation
COALESCE. Your code should also write out, after the sequence of coalesce operations, the
final graph G′ — the current set of nodes and a list of the current edges in edge list form.

3. Analyze the time complexity of carrying out your SETUP and COALESCE operations in
terms of n = |N| and m = |E|.

Turn in adequately documented code for this problem. Accompany this with a plain English
description of your overall approach, the data structures used, and important program variables.
Discuss how you handled any particularly troublesome design issues.

Suggestions: Try to avoid lots of special cases. Make your code modular, so that pieces can be
reused later.

Provide appropriate output for the test data set supplied.

