
MthSc 816 — Assignment #1 (COALESCE)

Data Structures

first: initial edge out of each node O(n)
to_node, next_edge: edge information O(2*2m)

seen: (Boolean array) gives nodes already seen O(n)
prev_edge: implements doubly-linked list O(2m)
mirror: moves between edge (i, j) and (j, i) O(2m)

Space complexity is O(2n + 8m), if G has n nodes and m edges.

Overall Design (main routine can be self-documenting)

Initialize G O(n)
ReadGraph O(m)
for (x, y) in mergenodes

 a = min (x, y), b = max (x, y) O(1)
 initialize seen to indicate nodes adjacent to a O(n)
 for all w ∈ AdjList(b) O(n)
 if seen(w) = false
 AddEdge (a, w), AddEdge (w, a)
 endif

 RemoveEdge (w, b)

 endfor

 AdjList(b) = [] O(1)
PrintGraph O(n + m)

 Time complexity is O(n + m) for SETUP and O(n) per COALESCE if we can
carry out the commands within the inner for loop in constant time. For a sequence
of O(n) COALESCE operations, runs in O(n + m + n2) = O(n2) time.

Code Issues

 Initialize G: first[i] = 0; this avoids special cases later.

 ReadGraph: one by one, read edge data; insert new edges at front of linked
adjacency list. No need for a last pointer.

 Develop a module AddEdge (u, v) to add this directed edge to the data
structure; call twice for adding undirected edges in ReadGraph. This can be
used in the COALESCE routine (constant time).

 How to carry out RemoveEdge (w, b) in constant time?

 Since we have edge (b, w) already, use mirror to take us to (w, b).
 Then use doubly-linked list to delete (w, b) in constant time.
 mirror can also be implemented using arithmetic for a static graph.

 To avoid the loop (a, a) when b is adjacent to a, we can set seen (a) = true;
this will avoid special cases.

 Can reuse space for edges (b, w), (w, b) when adding edges (a, w), (w, a).

 PrintGraph: run through adjacency lists of all remaining nodes.

 AddEdge(edgeloc, head, tail)

 to_node[edgeloc] = tail;

 next_edge[edgeloc] = first[head];

 first[head] = edgeloc;

General Comments

 Proper initialization can avoid checking special cases each time.
 Modularize your code.
 Give variables, arrays informative/descriptive names.

