
Visual C++ 6.0 Quick Guide

Preliminaries

• Install Visual Studio (which contains Visual C++) from the CD. Ignore the
prompt for MSDN, since we do not have the MSDN CDs (Use the on-line MSDN
instead).

• After installing the program, be sure to download and install Service Pack 6.
• Select Tools.Customize.(Toolbars). Check Build and uncheck

Build MiniBar. The Build bar gives you a nice dropdown box that displays
whether you are in Debug or Release mode.

• Select Tools.Options.(Tabs). Set the Tab size and Indent size to
2, and check Insert spaces. This will cause spaces to be inserted into the
program rather than tabs, which ensures that the code looks the same on all
computers no matter the tab spacing.

• The model:
o A project is a set of source code that compiles to an executable or library.

The .dsp file is essentially a makefile.
o A workspace (.dsw file) contains one or more projects. There is always at

least one workspace, but the simplest configuration of a single workspace
and a single project works pretty well.

o Source code is contained in .h, .c, and .cpp files. The C compiler is
automatically invoked for .c files, while the C++ compiler is invoked for
.cpp files.

o Object code and executables are contained in the Debug and/or Release
directories, which are created automatically.

o The resource file .rc contains resources, and is primarily useful for GUI-
based programs.

o Ignore (but leave) the StdAfx.[h,cpp] files, which are used for
precompiled headers.

o Files such as .clw, .ncb, .aps, and .opt can be ignored and/or deleted. They
are automatically generated by the VC++ program.

Create a New Program
There are two main types of executables: and Windows-based applications.

• To create a console-based application,
o File.New.(Projects).Win32 Console Application.

Type a name for the project, and specify a location (directory) on the hard
disk. A folder with the specified name will be created in the specified
directory, and files will be created in the folder.

o Select “An Application that supports MFC”. This choice is
recommended, because it gives you access to MFC if you ever decide later
that you need it. MFC stands for Microsoft Foundation Classes, which are
C++ wrappers around the Win32 API that make it much easier to program
on Windows.

• To create a windows-based application,

1

o File.New.(Projects).MFC AppWizard (exe). Type a name
for the project, and specify a location (directory) on the hard disk.

o Select Dialog based. (The other options are useful for creating end-
user applications, but they are significantly more complicated.)

o Uncheck ActiveX Controls.
o As before, a folder with the specified name is created in the specified

directory, and files are created in the folder.
• In either case, precompiled headers are an unnecessary headache. To turn them

off, select Project.Settings.(C/C++). Choose “Precompiled
Headers” in the drop-down box. Choose “All Configurations” in the
left drop-down box. Select “Not using precompiled headers.”

Editing Program

• For console-based application, ignore the MFC stuff. Put all of your code into the
else clause.

• For windows-based application, drag widgets onto dialog. To create a callback,
click on the widget and select View.Class Wizard. Click the desired
Message (e.g., BN_CLICKED), Add Function, Edit Code. Type code in
callback function in ProjectDlg.cpp file, where Project is the name of the
project.

• To add an existing file to the project, right-click on the project name in the
FileView and select Add Files to Project... and then select the
filename. To create a new file, select File.New.(Files).C++ Source
File (or C/C++ Header File), select the project, and enter the filename and
location. Alternatively, click the New Text File icon, save the file, then add
the file to the project.

Running Program

• To compile, select Build.Compile.
• To run, Build.Execute (which is the same as double-clicking the .exe file in

the Debug or Release folder). To run with the debugger attached,
Build.Start Debug.Go.

• While debugging, you can view the variables, call stack, memory, registers, etc.
using View.Debug Windows. In the call stack, double-click on line to jump
to the code. There are two windows for viewing variables: The Variables
window gives you automatic access to commonly-used variables using Auto,
Locals, and this tabs; The Watch window allows you to select and modify
the variables to view.

• In the Watch window, names can be dragged from the Variables window or
typed by hand. Append ,n to the name (where n is an integer) to view several
items in an array. Append ,x to the name to convert the number to hexadecimal.
The Watch window also accepts dereferencing (*), indexing ([]), and arithmetic
operations (+, -, *, /). For example, if p is an array of integers, then p,5 lists

2

the first five values, p[3] lists the fourth value, and p[1]+p[3] adds two of
the values.

Keyboard Shortcuts

• ESC Puts cursor in editor
• Alt+0 Puts cursor in Workspace window (containing FileView, etc.)
• Ctrl+PageUp/Down Cycles between ClassView, ResourceView, and FileView

when cursor is in Workspace window
• Ctrl+F Find (in current file)
• F3 Find next
• Ctrl+I Incremental search. Type string, then Ctrl+I to find next.
• Ctrl+Shift+F Find in files.

(This keyboard shortcut is not standard. To activate:
Tools.Customize.(Keyboard).(Category:Edit).(Commands:FindInFiles),
type Ctrl+Shift+F, Assign.)

• F7 Compile
• Ctrl+F7 Execute
• Ctrl+F2 Toggle bookmark
• F2 Go to next bookmark
• F4 Jump to next warning or error (Shift+F4 jumps back)
• F9 Toggle breakpoint (for debugger)
• F5 Execute with debugger attached. (Only allowed in Debug mode.)
• F10 (Debugger) Perform next instruction
• F11 (Debugger) Perform next instruction, stepping into it
• Ctrl+F10 (Debugger) Run to cursor
• Shift+F5 (Debugger) Exit debugger
• Ctrl+Shift+8 Toggle view whitespace (spaces are dots, tabs are >>)
• Ctrl+J Previous #ifdef
• Ctrl+K Next #endif
• Alt+F12 Go to definition of constant under cursor (e.g., NULL)

(only works if you have built project with Browse information)
• Ctrl+1 Insert Dialog
• Ctrl+2 Insert Menu
• Ctrl+3 Insert Cursor
• Ctrl+4 Insert Icon
• Ctrl+5 Insert Bitmap
• Ctrl+6 Insert Toolbar
• Ctrl+7 Insert Accelerator
• Ctrl+8 Insert String Table
• Ctrl+9 Insert Version Info
• Ctrl+Shift+R Start/Stop Record quick macro
• Ctrl+Shift+P Play quick macro

3

