on

neral Chair
{arama Kanoun
_LAAS-CNRS

T, Avenue du Colonel Roche
31077 Toulouse Cedex, France
anoun @laas.fr

lel: + (33) 61 33 6235

fax: + (33) 61 33 6411

»gram Co-Chairs

Jitsuru Ohba L
liroshima City University, Japy,
)hba@edu.ipc.hiroshima—cu.a&jp
‘ax: + (81) 82 830 1657

vladen A. Vouk .

Jorth Carolina State Univ., USa
rouk @adm.csc.ncsu.edu

ax :+(1) 919 515 7896 or 6497

blication Chair
/Aohamed Kafniche
LAAS-CNRS

aaniche @laas.fr

Tel: +(33) 61 33 6405
ax: +(33) 61 33 6411

:al Arrangements

Alain Dreuil, SITEF, France
Aarie-Thérése Ippolito, LAAS-C
oélle Penavayre, LAAS-CNRS

torials Co-Chairs
‘evzi Belli
Jniversity of Paderborn, Germary
ielli @uni-paderborn.de '
fax: +(49) 525 160 3246
seorge J. Knafl

Je Paul University, USA
nafl@cs.depaul.edu

ax: +(1) 312 362 6116

sIs Fair Co-Chairs

{ves Crouzet

.AAS-CNRS

rouzet@laas.fr

fax: +(33) 61 33 6411
!ichard M. Karcich /IEEE Rep.
itorageTek, USA
tick_Karcich@stortek.com
fax: +(1) 303 673 8641

ustry Liaison Chair
’atricia Mangan
Aerospace Corpo., USA
ratricia_mangan @macmail.aero
fax: +(1) 310 336 3442

)gram Committe(% sa) Exc@?”pl‘ed from
i Ackerman P
"B. Bastani (USA) apter 19, “The

L Chillarege (USA)

V. Ehrenberger (D) .
\. Faisandier (F) er 20 Years,” in

.C. Gaudel (F) .
4 Gg‘;’eva-l’opstoj anova(Mz, he M}’tthi.ll Man-
). Hamlet ((I{JSSAX) onth: Anniversary
. Horgan . .
LK. Iyer (USA) copyright ©

V. Jones (USA)
§ Khoshgroftaﬂr (USA)
..M. Lapassat (F)

.C. Laprie(® -~

i Littlewood (UK)

A Lyu (USA)

7K. Malaiya (USA)

¢ Matsumoto (JP)

% von Mayrhauser (USA)
.C. Munson (USA)

D. Musa (USA)

Nara (J)

Nikora (USA)
Pasquini (IT)
Sakamoto (J)
Schneidewind (USA)
Seviora (CDN)
Stark (USA)
Tohma (J)
Vallée (F)

. Voas (USA)

M Wohlin (SW)
A, Xie (SG)

ompany, Inc.
eprinted with

e George C. Page
Usensn of La Brea

—rroro.ey

cNmare

r and LAAS-CNRS. Orgal

ieliability Engineering 0 g
on Software Englneleq

Support from AT&T, B

OOK EXCERPT

Artwork courresy

- WHY IS THERE A TWENTIETH
- ANNIVERSARY EDITION?

The plane droned

. through the night toward

- LaGuardia. Clouds and

- darkness veiled all interest-

© ing sights. The document I

. was studying was pedestrian.
- I'was not, however, bored.

. The stranger sitting next to

. me was reading 7he Mythical
- Man-Month, and 1 was wait-
- ing to see if by word or sign

- he would react. F inally as we
 taxied toward the gate, T
- could wait no longer:

“How is that book? Do

. you recommend it?”

“Hmph! Nothing in it I

 didn’t know already.”

‘ I decided not to intro-
. duce myself.

Why has The Mythical

- Man-Month persisted? Why
- is it still seen to be relevant

© to software practice today?

- Why does it have a reader-

- ship outside the software

. engineering community,

- generating reviews, cita-
 tions, and correspondence

* from lawyers, doctors, psy-

- chologists, sociologists, as

- well as from software peo-

- ple? How can a book written
. 20 years ago about a soft- .
- ware-building experience 30
. years ago still be relevant,’
- much less useful?

R 20 YEARS

Frederick P. Brooks, Jr.

- One explanation some-

. times heard is that the soft-
- ware development discipline
. has not advanced normally
 or properly. This view is

: often supported by contrast-
| ing computer software

. development productivity

- with computer hardware

- manufacturing productivity,

- which has multiplied at least
. a thousandfold over the two

+ decades. As Chapter 16

- explains, the anomaly is not

that software has been so

- slow in its progress but

rather that computer tech-

- nology has exploded in a
- fashion unmatched in

- human history. By and large
- this comes from the gradual
 transition of computer man-

ufacturing from an assembly
industry to a process indus-
try, from labor-intensive to
capital-intensive manufactur-
ing. Hardware and software
development, in contrast to
manufacturing, remain
inherently labor-intensive.

A second explanation
often advanced is that The
Mythical Man-Month is only
incidentally about software
but primarily about how
people in teams make things.
There is surely some truth in
this; in the preface to the

1975 edition I said that man-
- two approaches to the ques-

aging a software project is

more like other management :
- member should be allowed

. or encouraged to know

- about the designs and code

. of other team members. In
 the Operating System/360

. project, we decided that //

. programmers should see 4/

{ material, i.e., each program-
- mer having a copy of the

. project workbook, which

: came to number over 10,000
- pages. Harlan Mills has

- argued persuasively that

- “programming should be a

- public process,” that expos-

" ing all the work to every-
“body’s gaze helps quality

: control both by peer pres-
 sure to do things well and by
 peers actually spotting flaws
- and bugs.

than most programmers ini-
tially believe. I still believe
that to be true. Human his-
tory is a drama in which the
stories stay the same, the
scripts of those stories
change slowly with evolving
cultures, and the stage set-
tings change all the time. So
it is that we see our twenti-
eth-century selves mirrored
in Shakespeare, Homer, and
the Bible. So to the extent
that The MM-M is about
people and teams, obsoles-
cence should be slow.
Whatever the reason,
readers continue to buy the
book, and they continue to
send me much-appreciated
comments. Nowadays I am
often asked, “What do you
think was wrong when writ-
ten? What is now obsolete?
What is really new in the
software engineering
world?” These quite distinct
questions are all fair, and I
shall address them as best I
can. Not in that order, how-
ever, but in clusters of topics.

: PARNAS WAS RIGHT AND |
: WAS WRONG ABOUT
- INFORMATION HIDING

In Chapter 7 I contrast

tion of how much each team

This view contrasts

¢ sharply with David Parnas’s
- teaching that modules of

: code should be encapsulated
{ with well-defined interfaces,
- and that the interior of such
i a module should be the pri-
 vate property of its program- :
- mer, not discernible from
- outside. Programmers are
- most effective if shielded

: from, not exposed to, the

: innards of modules not their
: OwWIn.

¢ Idismissed Parnas’s con-
* cept as a “recipe for disaster” :

: in Chapter 7. Parnas was
: right, and I was wrong. I am

{ now convinced that informa- -
- amounts of work and the

* copious opportunities for

- error that dwell at the indi-
- vidual statement level.

: tion hiding, today often

. embodied in object-oriented
. programuming, is the only

- way of raising the level of

- software design.

. One can indeed get disas-
 ters with either technique.

- Mills’ technique ensures that :
. research program, and it is
: an intellectual ancestor of
: object-oriented program-

- programmers can know the
- detailed semantics of the
“ interfaces they work to by

- knowing what is on the other
 as a software entity with its

- side. Hiding those semantics

 leads to system bugs. On the
- set of operations. Its data ¢

- other hand, Parnas’s tech-

‘ nique is robust under change
. its proper operations. The
- second step was a contribu-
: tion of several thinkers: the -
‘ upgrading of the Parnas
: module into an abstract dats
. type, from which many

. objects could be derived.
: The abstract data type pro-
- vides a uniform way of thin
- ing about and specifying

¢ There are not a lot:
- access discipline that is easy
: to enforce.

- and is more appropriate in a
- design-for-change philoso-

: phy. Chapter 16 argues the

: following:

e Most past progress in

- software productivity has

- come from eliminating non-
- inherent difficulties such as

- awkward machine languages
- and slow batch turnaround.

“ more of these easy pickings.
¢ Radical progress is

{ going to have to come from
¢ attacking the essential diffi-

¢ grams are made up of con-

i than the individual high-

 tions, we have radically
: raised the conceptual level,

ing definition of modules is
. the first published step in

i oriented programming,

- introduces the powerful co
. cept of inberitance, whereby
- classes (data types) take as

culties of fashioning complex
conceptual constructs.

The most obvious way to
do this recognizes that pro-

ceptual chunks much larger

level language statement —
subroutines, or modules, or
classes. If we can limit design

- and building so that we only
- do the putting together and
: parameterization of such

chunks from prebuilt collec-

and eliminated the vast

Parnas’s information-hid
that crucially important
ming. He defined a module ‘

own data model and its own -

only be accessed via one of

module interfaces, and an

The third step, object-

58

SEPTEMBER 18

o come from
ssential diffi-
yning complex
istructs.
bvious way to
izes that pro-
e up of con-
; much larger
dual high-
statement —
r modules, or
an limit design
o that we only
' together and
ion of such
yrebuilt collec-
s radically
ceptual level,
d the vast
ork and the
rtunities for
ell at the indi-
ent level.
1formation-hid-
\ of modules is
ished step in
important
yram, and it is
11 ancestor of
ed program-
fined a module
entity with its
del arid its own
ions. Its data can.
ssed via one of
yerations. The
was a contribu-
al thinkers: the
f the Parnas
an abstract datd
hich many
d be derived.
t data type pro-
»rm way of think-
1d specifying
rrfaces, and an
sline that is easy "

d step, object-
ogramming,

the powerful con-
ritance, whereby

1 types) take as

EPTEMBER 189

defaults specified attributes
from their ancestors in the

class hierarchy. Most of what
we hope to gain from object- .

oriented programming

derives in fact from the first
ep, module encapsulation,
plus the idea of prebuilt

hbrarles of modules or class-

that are designed and tested
r reuse. Many people have

ch modules are not just
programs, but instead are
ogram products in the

g for significant module

ality modules — general-

ed, robust, tested, and doc-
ented. Object-oriented

ogramming and reuse are

OPLE ARE EVERYTHING
ELL, ALMOST EVERYTHING)

Some readers have found
curious that The MM-M

¢ managerial aspects of
ftware engineering, rather
an the many technical

ues. This bias was due in

rt to the nature of my role !

the IBM Operating

ore fundamentally, it
rang from a conviction

a project, and their orga-
zation and management,
¢ much more important

- factors in success than are

the tools they use or the
technical approaches they
take.

Subsequent researches

have supported that convic-
. tion. Boehm’s COCOMO
- model finds that the quality

of the team is by far the

- largest factor in its success,
* indeed four times more
osen to ignore the fact that :
. factor. Most academic
© research on software engi-
. neering has concentrated on
sense discussed in Chapter 1.
me people are vainly hop-
© is encouraging to see ongo-
use without paying the ini- .
1 cost of building product- :

potent than the next largest

tool. I admire and covet
sharp tools. Nevertheless, it

ing research efforts on the
care, growing, and feeding

. of people, and on the

dynamics of software man-

i agement.

Peopleware. A major con-

- tribution during recent years
. has been DeMarco and :
¢ Lister’s 1987 book,

\ Peopleware: Productive Projects
¢ and Teams. Its underlymg

. thesis is that “The major

¢ problems of our work are

. not so much technological as
votes most of the essays to :

sociological in nature.” It
abounds with gems such as,
“The manager’s function is

\ not to make people work, it
© is to make it possible for
‘people to work.” It deals :
. with such mundane topics as :
stem/360 (now MVS/370). :
- together. DeMarco and
¢ Lister provide real data from :
at the quality of the people !
- that show stunning correla-
© tion between performances

: of programmers from the

. same organization, and

© between workplace charac-

- teristics and both productiv-
- ity and defect levels.

space, furniture, team meals

their Coding War Games

The top performers’ space is

5 quieter, more private, beiter
© protected against interruption,

© and there is more of it...
L it really matter to yots ..
- whether quiet, space, and pri-

© vacy belp your current people to
- do better work or [alternative-
- By] belp you to attract and keep
© better people?

. Does

I heartily recommend the

 book to all my readers.

Moving projects. DeMarco

¢ and Lister give considerable
. attention to team fision, an

. intangible but vital property.
. I think it is management’s

. overlooking fusion that

: accounts for the readiness I

* have observed in multiloca-

. tion companies to move a

. project from one laboratory

¢ to another.

My experience and

i observation are limited to
. perhaps a half~dozen moves.

I have never seen a SUuCCess-

: ful one. One can move #is-
. sions successfully. But in

every case of attempts to

' move projects, the hew team
© in fact started over, in spite

- of having good documenta-

. tion, some well-advanced

: designs, and some of the

. people from the sending

¢ team. I think it is the break-
. ing of fusion of the old team

that aborts the embryonic

- product, and brings about

restart.

 THE POWER OF GIVING UP
- POWER

If one believes, as I have

© argued at many places in this |
i book, that creativity comes
* from individuals and not

: from structures or processes,
. then a central question fac-

: ing the software manager is
¢ how to design structure and
| process so as to enhance,

i rather than inhibit, creativi-
 ty and initiative. Fortunate-
¢ ly, this problem is not pecu-
: liar to software organiza-

: tions, and great thinkers

: have worked on it. E.F.

¢ Schumacher, in his classic,

¢ Small is Beautiful: Economics

¢ as if People Mattered, propos-
- es a theory of organizing

. enterprises to maximize the
 creativity and joy of the

¢ workers. For his first princi-
. ple he chooses the

. “Principle of Subsidiary

¢ Function” from the

- Encyclical Quadragesimo

¢ Anmno of Pope Leo XIII:

It is an injustice and at the

| same time 4 grave evil and dis-
. turbance of right order to

| assign to & greater and higher
: association what lesser and sub-
- ordinate ovganizations can do.
¢ For every social activity ought
¢ of its very nature to furnish
- belp to the members of the body
. social and mever destroy and
¢ absorb them....
- mand should be sure that the
- more perfectly a graduated
: order is preserved among the
various associations, in observ-
. ing the principle of subsidiary
 function, the stronger will be

Those tn com-

the social authority and effec-

- tiveness and the happier and
: more prosperous the condition

 of the State.

Schumacher goes on to

- interpret:

The Principle of Subsidiary

¢ Function teaches us that the
¢ cemtre will gain in authority
¢ and effectiveness if the freedom

E SOFTWARE

59

60

and responsibility of the lower
formations are cavefully pre-
served, with the result that the
organization as a whole will be
“happier and more prosperous.”

How can such a structure be
achieved? ... The large organi-
zation will consist of many
semi-autonomous units, which
we may call quasi-firms. Each
of them will have a large
amount of freedom, to give the

. greatest possible chance to cre-
ativity and entrepreneur-
ship.... Each quasi-firm must
have both a profit and loss
account, and a balance sheet.

developments in software
engineering are the early
stages of putting such orga-
nizational ideas into prac-
tice. First, the microcom-
puter revolution created a
new software industry of
hundreds of start-ups.
These firms, all of them
starting small, and marked
by enthusiasm, freedom,

is changing now, as many
small companies continue to
be acquired by larger ones.
It remains to be seen if the
larger acquirers will under-

stand the importance of pre- :

serving the creativity of
smallness.
More remarkably, high

management in some large

firms have undertaken to del- :
egate power down to individ-

ual software project teams,

making them approach Schu- :

macher’s quasi-firms in
structure and responsibility.
They are surprised and
delighted at the results.

Jim McCarthy of Micro-
soft described to me his
experience at emancipating

- his teams:

. people) owns its feature set, its
 schedule, and even its process of
© how to define, build, ship. The

- teamn is made up for four or five
- specialties, including building,

¢ testing, and writing. The teas
- settles squabbles; the bosses don’t.
i I can’t emphasize enough the

- importance of empowerment, of
. the team being accountable to

¢ dtself for its success.

- head of IBM’s software busi-

- ness, told me his experience
- in undertaking the down-
“ ward delegation of power
Among the most exciting
* division managements:

. years| was delegating power

¢ down. It was like magic!

- Improved quality, productivity,
- morale. We have small teams,
- with no central control. The

. teams own the process, but they
: have to have one. They have

- many different processes. They
L : - own the schedule, but they feel
and creativity. The industry the pressure of the market. This
 pressure causes them to reach

Each feature team (30-40

Earl Wheeler, retired

long centralized in IBM’s

The key thrust [of vecent

 for tools on their own.

- Conversations with indi-
' vidual team members, of
. course, show both an appre-
. ciation of the power and
 freedom that is delegated,
- and a somewhat more con-:
! servative estimate of how
much control really is relin-
' quished. Nevertheless, the -
* delegation achieved is clear-
 ly a step in the right direc-
 tion. It yields exactly the
 benefits Leo XIII predicted:
' the center gains in real
- authority by delegating
' power, and the organizatiol
- as a whole is happier and
{ More prosperous.

SEPTEMBER 18

