
Real Time Head Tracker using Frame grabber and a Webcam

Venkata Pradeep Paruchuri, Subhash Pedamallu
Department of Electrical and Computer Engineering

Clemson University
Clemson, South Carolina 29631

pparuch, speddam @clemson.edu

Abstract

We present a simple prototype system for
real time tracking of a human head. This system
uses a simple yet a effective tracking algorithm
presented in [3]. The general requirements of a
real time tracking algorithm – it should be
computationally inexpensive, should possess the
ability to perform in different environments and
should be able to start and initialize itself with
minimum knowledge about the environment, [6]
are well addressed by the elliptical head tracking
algorithm. Our tracker has been developed on
two different configurations - USB Webcam and
Frame Grabber both running on Linux. Frame
grabber is a device, which can seize and record a
single frame of video information out of a
sequence of multiple frames [1]. The Bt848 chip
is a very common solution for Frame grabbers.
There are two types of device drivers in Linux
available for the bt848 based frame grabbers bttv
– where the images are directly sent to video
memory and bt848 – which is more suitable for
image processing applications as it allows Direct
Memory access of images into main memory
[2].The system tracks the objects and displays the
resulting tracked imagesreal time on the
computer screen. The object is modeled as an
ellipse. Frame rates close to about 5 frames per
second have been achieved.

Introduction

Real time tracking has been gaining a lot
of interest among computer vision and image
processing researchers because of its potentially
wide range of applications which not only include
robotics – incorporating vision in robots and
surveillance but also various other fields like
sports, entertainment industry etc. Since it is not
feasible to interrupt a tracker to correct tracking
errors by human intervention, an algorithm used

for real time tracking should be robust and
reliable. Also the algorithm must be
computationally inexpensive to achieve good
frame rate – which is very important in some
areas like tracking athletes in live sport events
where the loss of frames would result in the loss
of vital information for later analysis by sports
experts [6].

Fig 1. Block diagram of the Real time tracker

The overall system is as depicted in the
block diagram given in figure 1. The image
acquisition module grabs frames from the video

Grab
Frame

Video Device

1st
Frame?

Compute
Likelihood

Compute Gradients

Locate head position
by performing local

search

Display Tracked Head

Computer Screen

yes

no

Global
Search

device which are fed into the tracking module.
Now the tracking module checks if the grabbed
frame is the first frame. A global search is
performed for the first frame and the likelihood is
computed. This way the tracking module
automatically initializes the tracker by
performing this global search on the first frame
thus eliminating the need for any explicit
knowledge of the environment before hand. For
all the subsequent frames, the location of head is
found by performing a local search in the search
range. Finally the object which is tracked in real
time is displayed on the Computer screen.

The material in this paper is organized as
follows – first we discuss the concept of
acquiring images from the video devices –
Webcam and a Frame grabber. Next we discuss
about the details of the Tracking algorithm used –
Elliptical Head Tracker [3]. We then present the
real time implementation of this tracker and
discuss the implementation issues. Finally the
experimental results are reported and conclusions
followed.

Image Acquisition

This section discusses about acquiring
images from two different video devices –
Webcam and a Frame grabber.

Frame Grabber - Frame grabber is a device,
which can seize and record a single frame of
video information out of a sequence of multiple
frames. The image data is stored in the memory
buffers of the Frame grabber, from where we can
read the information by Direct Memory access.

Our system uses the Bt848 based frame
grabber which is connected to a video source.
Bt848 is a low cost single-chip solution by
Brooktree, now Connexant Systems for analog
NTSC/PAL/SECAM video capture on the PCI
bus. There are several Frame Grabbers which use
the bt848 chip and all run on the same device
driver [2]. While the Bt848 driver was originally
developed for the FreeBSD operating system this
was ported under Linux by Brad Parker. The user
interface is the same as in a meteor driver so that
applications can be written with either a Bt848
based frame grabber or a Matrox Meteor Card.
The meteor driver allows for DMA transfer of

images into main memory and is very efficient
for image processing [7].

It takes advantage of the PCI based
system’s high bandwidth and inherent multimedia
capability. It is designed to be interoperable with
any other PCI multimedia device at the
component or board level, thus enabling video
capture and overlay capability to be added to PCI
systems in a modular fashion at low cost. Further
the Bt848 solution is independent of the PCI
system bus topology and may be used directly on
a motherboard [8].

Webcam – A webcam consists of a digital camera
which is connected to a piece of hardware used to
grab images from the digital camera at regular
intervals.

The webcam used is a Logitech
Quickcam Notebook Pro which connects to the
USB port. Linux 2.6 Kernel provides a device
driver for this webcam which can be used to
interact with the device.

We developed separate applications in C
for grabbing images from the Bt848 frame
grabber, and the webcam based on their Linux
device drivers.

Elliptical Head Tracking Algorithm

The head contour is approximated by a
two dimensional model –Ellipse with an aspect
ratio of 1.2. The basic idea of the algorithm is to
perform a local search of the image where the
sum of the normalized image gradients computed
over the boundary pixels of an ellipse is the
maximum. Velocity prediction is further added to
eliminate the limitations due to the maximum
velocity conditions. It has been proved to be
efficient for complete 360 degree rotations and
supports reacquisition of the image and performs
very well to handle occlusion, tilting, rotation,
scaling problems and textured background. Prior
work done did not support out of plane rotations,
or employed facial color recognition, a
background subtraction which is not suitable
owing to the variations in the camera position and
lighting conditions [3].

s is the ellipse state defined as (x, y, l),
where x, y define position of the ellipse and l

defines the scale of the ellipse. The optimal
position (s*) is given by









 


lN

i
i

l
Ss

g
N

s
1

* ||
1

maxarg

where Nl is the number of points on the
perimeter of the ellipse, gi is the gradient at pixel
‘i’. The search space S is the set of all the states
within some range of the predicted location.

r
p

r
p

r
p lllyyyxxxsS  ||,||,|:|{

Where we used xr = yr = 4 and lr = 1 in our
implementation
The predicted state (xp,yp), the predicted scale lp

are obtained from the velocity prediction
formulae as given below

1

321

321

)(

)(













t
p

ttt
p

ttt
p

ll

yyyy

xxxx

The tracker’s sensitivity to dominant
backgrounds can further be eliminated if instead
of just finding the gradient intensities, the square
of the dot product of the gradient and the ellipse
normal is computed [10]. It is different from
other algorithms in that – gradient is summed
over the entire parameter instead of just a few
select points, and also it allows all of the date to
be examined before a decision is made [3].

Prototype Tracker Implementation

The prototype tracker was implemented
on two machines – one using a M-system’s disk-
on-chip running Linux 2.4 and the other one is
Pentium Centrino based laptop running on Linux
2.6. We tested the Frame grabber version on the
first machine and the Webcam version on the
other one.

The Image Acquisition module and the
Tracker modules are completely implemented in
GNU C. All the routines used in the Tracker
module have been completely developed from
scratch without using any open source libraries.

We used Matrox Meteor device driver provided
by Prof. Adam Hoover to interact with the Frame
Grabber and Phillips webcam driver provided
with the Linux 2.6 kernel, to interact with the
webcam.

The Image Acquisition module for the
webcam involves conversions from YUV color
space to RGB color space, since the Logitech
webcam gives the image in the YUV format.

In the Tracker module - the gradients for
the Red, green and Blue pixels are computed
separately and the average is mapped on to form
a gradient map of the image. An optimal position
of the head is found by performing a global
search on the first frame. The optimal position is
where the sum of gradients over all the points of
the ellipse boundary is the maximum. For all the
subsequent frames the search area is restricted to
a finite range forming the likelihood where the
object may be present. Now the tracked frame
along with the ellipse mapped on to the head is
displayed.

For frame grabber setup, the monitor is
configured to 16-bit display, but frame grabber
gives us the RGB24 image so to display images
we are employing Pixel packing. Pixel packing
technique takes original RGB24 image, and
selects most significant bits of each – 5 from Red,
6 from Green, and 5 from Blue components to
give us 16-bit image data.

Frame rates up to 4-5 Frames per second
have been achieved on the Webcam setup and 2
frames per second on Frame grabber setup.
Further optimization is possible by parallelization
of the computations. The use of color histograms
is expected to further increase the efficiency of
tracking by making it insensitive to textured
backgrounds [5]. Some algorithms also suggest
employing methods like background subtraction,
thresholding etc. for enhancing the performance
[6].

Experimental Results

The tracker was tested using the setup
described above under different environments
and lighting conditions and it has been observed
that it performs better in plain background
environments even with occlusions, rotations and

Fig 2 Tracked Images – Untextured Background

Fig 3 Textured Background –Gradient Intensity

Fig 4Textured Background –Normal Dot Product

Fig 5 Non Uniform Lighting Conditions

scaling. This tracker occasionally looses track of
the subject when performing in environments
with non uniform lighting conditions and textured
backgrounds. Fig 2 shows some frames taken
from the tracking process under uniform lighting
conditions and untextured background. Figure 3
shows the tracked images where the tracker fails
due to textured background. Figure 4 shows that
adopting gradient normal dot product [10] solves
this. Figure 5 shows the tracked images, where
the tracker fails due to non uniform lighting.

Conclusions and Future Work

Real time tracking using a Frame grabber
and a webcam has been tested with the Elliptical
head tracking algorithm. Frame rates close to
about 5 frames per second have been achieved.
The tracking accuracy is satisfactory even when
the head is rotated out of plane thus eliminating
the limitations of the tracking algorithms which
depend on the facial color. It works fine even
with textured backgrounds although occasionally
the algorithm fails when the gradient intensities

of the background dominate that of the
foreground head to be tracked.

The tracking algorithm can be further
optimized to give a much higher frame rate.
Currently frame rates up to about 30 Frames per
second have been reported [9]. There is a loss of
information in the form of frames on the temporal
space when there is a low frame rate, which may
not be desirable. Frames rates upto 10 Frames per
second can be achieved by optimizing the
software, which is sufficient for real time
tracking.

Our implementation does not perform
very well in the case of environments with non
uniform lighting conditions, or dominant textured
backgrounds. This can be further improved by
employing algorithms like feature tracking etc.

Acknowledgements

Thanks to Dr. Stanley Birchfield for
giving us this opportunity to work, and his
constant help during the course of this project.
Special thanks to Dr. Adam Hoover for letting us
use the equipment in his lab. Also thanks to our
friend Kamal Lanka for providing us the Logitech
webcam.

References

[1] Bandwidth Market, Glossary
http://www.bandwidthmarket.com/resources/glos
sary/F5.html

[2] Bt848 Linux Device Driver,
http://www.dis.uniroma1.it/~iocchi/bt848/

[3] Stanley Birchfield, “Elliptical Head Tracker”,
31st Asimolar Conference on Signals,Systems
and, Computers, November 1997.

[4] PPM Format,
http://netpbm.sourceforge.net/doc/ppm.html

[5] Stanley Birchfield, “Elliptical Head Tracker
using Intensity Gradients and Color Histograms”,
 IEEE Conference on Computer Vision and
Pattern Recognition, June 1998.

[6] Janez Pers et. Al., “ A Low cost Real Time
Tracker of Live Sport Events”

[7] Matrox Meteor Capture Card Driver
Announcement,http://lists.freebsd.org/pipermail/f
reebsd-announce/1995-August/000086.html
[8] Digital Infotainment, Bt848 Single chip
Video Capture card and PCI Bus Master,
http://www.clavis.ne.jp/~listcam/bt848.html

[9] Carlos Morimoto, “ Real time detection
 of Eye and Faces”, IBM Almaden
 Research Center

[10] Nishihara, Personal Communication,
Reported in Stanley Birchfield, “Elliptical Head
Tracker”, 31st Asimolar Conference on Signals,
Systems and, Computers, November 1997.

http://www.bandwidthmarket.com/resources/glossary/F5.html
http://www.bandwidthmarket.com/resources/glossary/F5.html
http://www.dis.uniroma1.it/~iocchi/bt848/
http://netpbm.sourceforge.net/doc/ppm.html
http://lists.freebsd.org/pipermail/freebsd-announce/1995-August/000086.html
http://lists.freebsd.org/pipermail/freebsd-announce/1995-August/000086.html
http://www.clavis.ne.jp/~listcam/bt848.html

