
 Head Tracking Using Learned Linear Subspaces

 Ramakrishnan Ravindran Sandeep Hiremath
 rravind@clemson.edu shirema@clemson.edu
 CES Department ECE Department
 Clemson University SC 29631 Clemson University SC 29631

Abstract

 This paper presents a simple and efficient
tracking algorithm based on representing the
appearance of objects using learned linear
subspaces. The tracker updates this subspace
and maintains an updated appearance model of
the object making the tracking problem simpler.
Using the L² reconstruction norm in this
framework we provide a simple algorithm for
finding a subspace whose uniform L2-
reconstruction error norm for a given collection
of data samples is below some threshold. We
show some experimental results and some
intermediate results to illustrate the various
steps involved in this algorithm.

1 Introduction

 The main purpose of a visual tracker is to
locate an object of interest in a given image
sequence and lock on to the target and follow it
during the progress of the sequence while
maintaining proper focus or placement over the
object. In simpler tracking algorithms the shape
of the tracking window is kept constant and
hence this restricts the tracker to objects which
do not have any sort of form or shape variation
during the sequence. This works efficiently but
has very little use in the real world since most
objects tend to move in a given sequence and
subtle variations in angle and location can lead to
a change of shape or orientation. Hence the
simplicity of a tracker which uses a fixed
window restricts its real world functionality and
hence requires enhancements. The enhancement
can be in the form of using several windows to
find the exact location of the target so that
varying window shapes and sizes can cope with
the change in shape of the object. But if this
technique is used along with a simple algorithm
such as likelihood computation or intensity
matching, the performance of the algorithm
becomes very poor as for each window; the
likelihood or intensity computation has to be

made which makes it a tedious process hence
slowing it down significantly. An alternative to
these techniques is to use previous frames in the
sequence to maintain an up to date reference
model so as to enhance tracking. Since all the
above mentioned techniques use only the current
frame or at best the previous frame, the tracker
has to check every frame for all possibilities. If
several frames are retained, then the results of
those frames can be used to create a model of the
object of interest and hence the tracking problem
is now essentially a detection problem.

 This paper proposes an adaptive appearance
model for tracking complex natural objects based
on the subspace technique. Within the subspace
framework, updating the model becomes how to
define a subspace L that best approximates a
given set of data {x1, ・ ・ ・ , xN}, the
observations from the previous frames. What
constitutes a good approximation depends on the
underlying metric one uses to define the quality
of the approximation.

 The simplicity of the algorithm lies in the fact
that only image intensity values are used to track
the object, there is no complex probabilistic
estimation nor is there any form of optimization.
The tracker still works effectively and is robust
against illumination changes and pose variations.
The main objective of this paper is to explain
how such a simple algorithm works. The
organization of the paper is as follows, the basic
algorithm is explained first without getting into
much detail about the techniques involved within,
and this will deal specifically with the
computation and updating of the subspace. The
next section explains some of the techniques and
mathematic operations used in this algorithm in
detail. The final section shows a few preliminary
results on an image sequence used to test the
working of this algorithm. We conclude with a
short summary and some ideas for extending this
algorithm to make it more efficient.

 1

mailto:rravind@clemson.edu
mailto:shirema@clemson.edu

2 Tracking Algorithm

 This section deals with the tracking
algorithm. The tracking window is first
initialized for the first frame. This can be done
manually or using a likelihood map of the image.
The tracking window has a rectangular shape and
the size and tilt of this window are initialized in
the first frame. The window has 5 parameters [a,
b, x, y, theta], these are the minor axis, major
axis, x co-ordinate of center, y co-ordinate of
center and the angle made to the principle axis
respectively. Once these have been initialized the
tracker can have variations in both scale and
angle, meaning there can be a change in the
minor and major axes and the angle theta so as to
change the size and tilt of the window. To
simplify the tracking procedure we have
implemented only tilt and hence the minor axis
and major axis are fixed. Theta can be varied to
compensate for pose variation (e.g. tilting of a
head). After the first frame, at each frame, the
tracker maintains an up-to-date model and the
tracking task becomes a detection problem.

 To estimate the location of the target in the
current frame, we sample S windows of different
sizes and locations near the targets location in
the previous frame. The content of each window
is then rectified to a fixed size. By rasterizing the
rectified windows, we obtain the content of the
windows as a set of points in some vector space
IRk. At any given frame the appearance model is
represented as a linear subspace L in the vector
space IRk. The L2-distance between each xi and L
is computed and the state of the target at current
frame is defined to be the window wi such that
its corresponding xi minimizes the distance to the
subspace L among all {x1, ・ ・ ・ , xs}.

3 Updating the Subspace

 Under the subspace framework the update
strategy is to search for a linear subspace L that
best approximates the collection of data samples.
These are the observations from the previous
frames. A pair of input parameters is specified,
(N, ∂).

1 In this example the image was large and hence the
window size was also significantly large, so the
window had to be rectified twice to bring it to 1/4th the
original size.

Here N denotes the number of frames who’s
tracking results we retain and ∂ is the threshold.
For the first N frames the results get stored one
after the other and the vector space in effect
grows in size. When the frame N+2 is
encountered, the first frame in the sequence is
pushed out and the whole sequence is shifted one
position left adding the result of the frame N+1
to the end. Now the vector space has been
updated and the window approximation is done
using these values. As the sequence progresses,
this operation are repeated hence maintaining an
up-to-date appearance model of the target.

3.1 Rectification

 Rectification is the process of converting the
various windows into a window of fixed size.
Since the window size in the image sequence is
quite large and consists of several intensity
values, the size is reduced to improve the
performance of the tracker. The complexity of
this algorithm can vary but to have an efficient
tracker we have used a very simple algorithm for
rectification which effectively reduces the size of
the window by half. If repeated the window gets
halved yet again. This can be done using
minimal steps but it still retains much of the
detail. This is done by taking the mean of
consecutive pixels within the window in both the
X and the Y direction. This in effect reduces the
window size in half. This is repeated till the
window is significantly smaller but still contains
enough detail of the target so that the operation
of the tracker is not deterred.

The actual window Window rectified once

Window rectified twice 1

 2

It can be seen from the above example that much
of the detail within the window has been retained
even after it has been rectified twice effectively
reducing the window size to 1/4th it’s original
size.

3.2 The Gramm-Schmidt Algorithm

 The Gramm-Schmidt algorithm is used to
compute the orthonormal basis for the subspace
V that a set of vectors span. This can be used to
compute the closest approximation of the current
window to the previous results obtained.

 Uj = [1 / |Wj|].Wj
 j-1
where Wj = Vj - ∑ (Vj.Ui).Ui
 i=1

E.g.: If the orthonormal basis is to be found for
two vectors V1 and V2, V1 is first normalized to
compute U1, then a vector W2 is constructed
orthogonal to U1.

 W2 = V2 – a.U1.
 Once this is found, the second element U2 is
found by normalizing W2.
 This process is continued for the next vector
V3 and so on

W3 = V3 – (V3.U1).U1 – (V3.U2).U2 and
U3 = [1 / |W3|].W3

 Once the orthonormal basis has been found,
finding the closest match to the current frame is

just a matter of computing distance between the
vectors.

4 Remarks

 The most prominent feature of the algorithm
is its simplicity: the tracking algorithm simply
takes the tracking results over a constant interval
and uses these to form the linear subspace. No
prior model learned off-line is used by the
algorithm. The algorithm operates on the pixel
intensity values only, and there is no
sophisticated probability estimates, non-linear
optimization or filtering of images. One of the
problems with this algorithm has to do with the
problem of drift. Without learning the model
offline, or having a reference model, it is nearly
impossible to guarantee a drift free algorithm.

 One possible method for enhancing the tracker’s
ability against drift is to always include the
observation made in the first frame in the
appearance model. Among all the tracking
results made along the video sequence, only the
first observation provides an accurate model of
the object. Observations made in the subsequent
frames will invariably be associated with non-
zero probabilities that they are not the tracked
object. Therefore, it makes sense to include the
first result in the subspace so as to improve the
algorithms performance against drift issues. With
this small variation, a substantial improvement
can be noticed in the performance of the tracker
against drift.

5 Results

Tracking the head in an image sequence

 3

Rectified windows for the above frames of image sequence

6 Conclusion

 In this paper, we have introduced a technique
for learning on-line a representation of the
appearances of an object that is being tracked. This
is done by representing the appearances as a linear
subspace and choosing a constraint using a well
chosen metric, the resulting tracker is both simple
and fast. The simplicity yet impressive
performance of this tracker is one of the primary
reasons for implementing this algorithm. There are
several enhancements that can be made to this
algorithm to make it more efficient.
 One of the ways to improve the performance is
to divide the N samples from previous results into
batches of size k. This follows the reasoning that
the target will not have significant pose variations
within k frames and the variations will be minor.
This can be set as a threshold and k can be
determined accordingly. Once this is done the
batch mean can be computed and the results which
are closest to the batch mean are retained while the
rest are dumped. The batch means are used as the
subspace and using the Gramm-Schmidt process,
the closest approximation can be found.
 Another obvious extension to this algorithm is
the inclusion of scaling. When scaling is
introduced into the algorithm, rectification
becomes a much more complicated algorithm and

hence may require a lot more computation. But
scaling gives the tracker the ability to track the
target even if it moves towards or away from the
camera. The tracker implemented without scaling
will not be able to handle such scenarios.
 One of the major parts which can be looked
upon to affect the performance of the tracker is the
variable N. If N is too small, the number of frames
retained is lesser and hence the trackers ability to
cope with pose variations might be affected, but the
speed of the algorithm is improved. On the other
hand if N is too large, the speed is affected but the
tracker will have a lot more information on the
target and hence will be better at tracking. A slight
problem might occur if the tracker loses the target
for a few frames (especially when closer to N and
if N isn’t that large), then the appearance model is
not the required target and the tracker will not be
able to acquire the target again. This can be
prevented by using a global model which is also
initialized in the first few frames and this can be
referred occasionally to check if the tracker is still
locked on to the target or whether it has totally lost
the target. But a threshold level has to be set for
this also since due to pose variation and lighting
changes, the target might be different from the
global appearance model. These are areas where
further work can be done to extend this algorithm.

References

[1] Ho, J. Kuang-Chih Lee, Ming-Hsuan
Yang Kriegman, D. Visual tracking using learned
linear subspaces. In Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, pages I-782- I-789 Vol.1, 2004

[2] S. Birchfield. An elliptical head tracker. In Proc. of
the 31st Asilomar Conf. on Signals, Systems and
Computers, 1997.

[3] Eric Carlen. Notes on the Gramm-Schmidt
Procedure for Constructing Orthonormal Bases.

 4

[4] Kuang-Chih Lee, Jeffrey Ho, David Kriegman.
Acquiring Linear Subspaces for Face Recognition
under Variable Lighting

[5] A. M. Baumberg and D. C. Hogg. An efficient
method for contour tracking using active shape models.

In Proceedings of the IEEE Workshop on Motion of
Non-Rigid and Articulated Objects, pages 194–199,
1994.

[6] M. Black and A. Jepson. Eigentracking: Robust
matching and tracking of articulated objects using a
view-based representation. In Proc.European Conf. on
Computer Vision, pages 329–342, 1996.

[7] Sumit Basu, Irfan Essa, and Alex Pentland. "Motion
Regularization for Model-Based Head Tracking." In
Proceedings of the IEEE Int'l Conference on Pattern
Recognition (ICPR '96). Vienna, Austria. 1996.

[8] R. M. Haralick and L. G. Shapiro. Computer and
Robot Vision, volume 2. Reading, Mass.: Addison-
Wesley, 1993.

[9] H. P. Graf, E. Cosatto, D. Gibbon, M. Kocheisen,
and E. Petajan. Multi-modal system for locating heads
and faces. In Proc. of the Second Intl. Conference on
Automatic Face and Gesture Recognition, pages 88–93,
1996.

[10] La Cascia, M., Sclaroff, S., and Athitsos, V. Fast.
Reliable Head Tracking under Varying Illumination:
An Approach Based on Robust Registration of Texture-
Mapped 3D Models, In Proceedings of IEEE
Conference on Pattern Analysis and Machine
Intelligence (PAMI), 22(4), April, 2000.

[11] Gregory D. Hager, and Peter N. Belhumeur.
Efficient Region Tracking With Parametric Models of
Geometry and Illumination. In Proceedings of IEEE
Conference on Pattern Analysis And Machine
Intelligence, 1998.

[12] David Ross, Jongwoo Lim, and Ming-Hsuan Yang.
Adaptive Probabilistic Visual Tracking with
Incremental Subspace Update

 5

http://www.cs.bu.edu/groups/ivc/pubs/pami.22.4.pdf
http://www.cs.bu.edu/groups/ivc/pubs/pami.22.4.pdf
http://www.cs.bu.edu/groups/ivc/pubs/pami.22.4.pdf
http://www.cs.bu.edu/groups/ivc/pubs/pami.22.4.pdf

