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Abstract 
 

     This paper presents a simple and efficient 
tracking algorithm based on representing the 
appearance of objects using learned linear 
subspaces. The tracker updates this subspace 
and maintains an updated appearance model of 
the object making the tracking problem simpler. 
Using the L² reconstruction norm in this 
framework we provide a simple algorithm for 
finding a subspace whose uniform L2-
reconstruction error norm for a given collection 
of data samples is below some threshold. We 
show some experimental results and some 
intermediate results to illustrate the various 
steps involved in this algorithm. 
 
 
1   Introduction 
 
     The main purpose of a visual tracker is to 
locate an object of interest in a given image 
sequence and lock on to the target and follow it 
during the progress of the sequence while 
maintaining proper focus or placement over the 
object. In simpler tracking algorithms the shape 
of the tracking window is kept constant and 
hence this restricts the tracker to objects which 
do not have any sort of form or shape variation 
during the sequence. This works efficiently but 
has very little use in the real world since most 
objects tend to move in a given sequence and 
subtle variations in angle and location can lead to 
a change of shape or orientation. Hence the 
simplicity of a tracker which uses a fixed 
window restricts its real world functionality and 
hence requires enhancements. The enhancement 
can be in the form of using several windows to 
find the exact location of the target so that 
varying window shapes and sizes can cope with 
the change in shape of the object. But if this 
technique is used along with a simple algorithm 
such as likelihood computation or intensity 
matching, the performance of the algorithm 
becomes very poor as for each window; the 
likelihood or intensity computation has to be 

made which makes it a tedious process hence 
slowing it down significantly. An alternative to 
these techniques is to use previous frames in the 
sequence to maintain an up to date reference 
model so as to enhance tracking. Since all the 
above mentioned techniques use only the current 
frame or at best the previous frame, the tracker 
has to check every frame for all possibilities. If 
several frames are retained, then the results of 
those frames can be used to create a model of the 
object of interest and hence the tracking problem 
is now essentially a detection problem.  
 
     This paper proposes an adaptive appearance 
model for tracking complex natural objects based 
on the subspace technique. Within the subspace 
framework, updating the model becomes how to 
define a subspace L that best approximates a 
given set of data {x1, ・  ・  ・  , xN}, the 
observations from the previous frames. What 
constitutes a good approximation depends on the 
underlying metric one uses to define the quality 
of the approximation.  
 
     The simplicity of the algorithm lies in the fact 
that only image intensity values are used to track 
the object, there is no complex probabilistic 
estimation nor is there any form of optimization. 
The tracker still works effectively and is robust 
against illumination changes and pose variations. 
The main objective of this paper is to explain 
how such a simple algorithm works. The 
organization of the paper is as follows, the basic 
algorithm is explained first without getting into 
much detail about the techniques involved within, 
and this will deal specifically with the 
computation and updating of the subspace. The 
next section explains some of the techniques and 
mathematic operations used in this algorithm in 
detail. The final section shows a few preliminary 
results on an image sequence used to test the 
working of this algorithm. We conclude with a 
short summary and some ideas for extending this 
algorithm to make it more efficient. 
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2   Tracking Algorithm 
 
      This section deals with the tracking 
algorithm. The tracking window is first 
initialized for the first frame. This can be done 
manually or using a likelihood map of the image. 
The tracking window has a rectangular shape and 
the size and tilt of this window are initialized in 
the first frame. The window has 5 parameters [ a, 
b, x, y, theta ], these are the minor axis, major 
axis, x co-ordinate of center, y co-ordinate of 
center and the angle made to the principle axis 
respectively. Once these have been initialized the 
tracker can have variations in both scale and 
angle, meaning there can be a change in the 
minor and major axes and the angle theta so as to 
change the size and tilt of the window. To 
simplify the tracking procedure we have 
implemented only tilt and hence the minor axis 
and major axis are fixed. Theta can be varied to 
compensate for pose variation (e.g. tilting of a 
head). After the first frame, at each frame, the 
tracker maintains an up-to-date model and the 
tracking task becomes a detection problem. 
 
     To estimate the location of the target in the 
current frame, we sample S windows of different 
sizes and locations near the targets location in 
the previous frame. The content of each window 
is then rectified to a fixed size. By rasterizing the 
rectified windows, we obtain the content of the 
windows as a set of points in some vector space 
IRk. At any given frame the appearance model is 
represented as a linear subspace L in the vector 
space IRk. The L2-distance between each xi and L 
is computed and the state of the target at current 
frame is defined to be the window wi such that 
its corresponding xi minimizes the distance to the 
subspace L among all {x1, ・ ・ ・ , xs}.  
 
 
3   Updating the Subspace 
 
     Under the subspace framework the update 
strategy is to search for a linear subspace L that 
best approximates the collection of data samples. 
These are the observations from the previous 
frames. A pair of input parameters is specified, 
(N, ∂).  
 
----------------------------------------------------------- 
1 In this example the image was large and hence the 
window size was also significantly large, so the 
window had to be rectified twice to bring it to 1/4th the 
original size. 

 
 
Here N denotes the number of frames who’s 
tracking results we retain and ∂ is the threshold. 
For the first N frames the results get stored one 
after the other and the vector space in effect 
grows in size. When the frame N+2 is 
encountered, the first frame in the sequence is 
pushed out and the whole sequence is shifted one 
position left adding the result of the frame N+1 
to the end. Now the vector space has been 
updated and the window approximation is done 
using these values. As the sequence progresses, 
this operation are repeated hence maintaining an 
up-to-date appearance model of the target. 
 
 
3.1   Rectification 
 
     Rectification is the process of converting the 
various windows into a window of fixed size. 
Since the window size in the image sequence is 
quite large and consists of several intensity 
values, the size is reduced to improve the 
performance of the tracker. The complexity of 
this algorithm can vary but to have an efficient 
tracker we have used a very simple algorithm for 
rectification which effectively reduces the size of 
the window by half. If repeated the window gets 
halved yet again. This can be done using 
minimal steps but it still retains much of the 
detail. This is done by taking the mean of 
consecutive pixels within the window in both the 
X and the Y direction. This in effect reduces the 
window size in half. This is repeated till the 
window is significantly smaller but still contains 
enough detail of the target so that the operation 
of the tracker is not deterred. 
 

          
The actual window     Window rectified once 
 

 
Window rectified twice 1
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It can be seen from the above example that much 
of the detail within the window has been retained 
even after it has been rectified twice effectively 
reducing the window size to 1/4th it’s original 
size. 
 
 
3.2   The Gramm-Schmidt Algorithm 
 
     The Gramm-Schmidt algorithm is used to 
compute the orthonormal basis for the subspace 
V that a set of vectors span. This can be used to 
compute the closest approximation of the current 
window to the previous results obtained.  
                                                                                           
           Uj = [ 1 / |Wj| ].Wj      
    j-1
where     Wj = Vj - ∑ (Vj.Ui).Ui 
    i=1 

E.g.: If the orthonormal basis is to be found for 
two vectors V1 and V2, V1 is first normalized to 
compute U1, then a vector W2 is constructed 
orthogonal to U1. 
 
                          W2 = V2 – a.U1. 
      Once this is found, the second element U2 is 
found by normalizing W2. 
     This process is continued for the next vector 
V3 and so on 
 
W3 = V3 – (V3.U1).U1 – (V3.U2).U2 and  
U3 = [ 1 / |W3| ].W3 

 

 
     Once the orthonormal basis has been found, 
finding the closest match to the current frame is 

just a matter of computing distance between the 
vectors.  
 
4   Remarks 
 
     The most prominent feature of the algorithm 
is its simplicity: the tracking algorithm simply 
takes the tracking results over a constant interval 
and uses these to form the linear subspace. No 
prior model learned off-line is used by the 
algorithm. The algorithm operates on the pixel 
intensity values only, and there is no 
sophisticated probability estimates, non-linear 
optimization or filtering of images. One of the 
problems with this algorithm has to do with the 
problem of drift. Without learning the model 
offline, or having a reference model, it is nearly 
impossible to guarantee a drift free algorithm. 
     
 One possible method for enhancing the tracker’s 
ability against drift is to always include the 
observation made in the first frame in the 
appearance model. Among all the tracking 
results made along the video sequence, only the 
first observation provides an accurate model of 
the object. Observations made in the subsequent 
frames will invariably be associated with non-
zero probabilities that they are not the tracked 
object. Therefore, it makes sense to include the 
first result in the subspace so as to improve the 
algorithms performance against drift issues. With 
this small variation, a substantial improvement 
can be noticed in the performance of the tracker 
against drift. 
 
 
 
 
 

5   Results 
 

         
 

Tracking the head in an image sequence 
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Rectified windows for the above frames of image sequence 
 

 

 

6   Conclusion 
 
     In this paper, we have introduced a technique 
for learning on-line a representation of the 
appearances of an object that is being tracked. This 
is done by representing the appearances as a linear 
subspace and choosing a constraint using a well 
chosen metric, the resulting tracker is both simple 
and fast. The simplicity yet impressive 
performance of this tracker is one of the primary 
reasons for implementing this algorithm. There are 
several enhancements that can be made to this 
algorithm to make it more efficient.  
     One of the ways to improve the performance is 
to divide the N samples from previous results into 
batches of size k. This follows the reasoning that 
the target will not have significant pose variations 
within k frames and the variations will be minor. 
This can be set as a threshold and k can be 
determined accordingly. Once this is done the 
batch mean can be computed and the results which 
are closest to the batch mean are retained while the 
rest are dumped. The batch means are used as the 
subspace and using the Gramm-Schmidt process, 
the closest approximation can be found. 
     Another obvious extension to this algorithm is 
the inclusion of scaling. When scaling is 
introduced into the algorithm, rectification 
becomes a much more complicated algorithm and 

hence may require a lot more computation. But 
scaling gives the tracker the ability to track the 
target even if it moves towards or away from the 
camera. The tracker implemented without scaling 
will not be able to handle such scenarios. 
     One of the major parts which can be looked 
upon to affect the performance of the tracker is the 
variable N. If N is too small, the number of frames 
retained is lesser and hence the trackers ability to 
cope with pose variations might be affected, but the 
speed of the algorithm is improved. On the other 
hand if N is too large, the speed is affected but the 
tracker will have a lot more information on the 
target and hence will be better at tracking. A slight 
problem might occur if the tracker loses the target 
for a few frames (especially when closer to N and 
if N isn’t that large), then the appearance model is 
not the required target and the tracker will not be 
able to acquire the target again. This can be 
prevented by using a global model which is also 
initialized in the first few frames and this can be 
referred occasionally to check if the tracker is still 
locked on to the target or whether it has totally lost 
the target. But a threshold level has to be set for 
this also since due to pose variation and lighting 
changes, the target might be different from the 
global appearance model. These are areas where 
further work can be done to extend this algorithm. 
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