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Abstract

A visual servo tracking controller is developed in this pa-
per for a monocular camera system mounted on an under-
actuated wheeled mobile robot (WMR) subject to nonholo-
nomic motion constraints (i.e., the camera-in-hand prob-
lem). A prerecorded image sequence (e.g., a video) of
three target points is used to define a desired trajectory
for the WMR. By comparing the target points from the
prerecorded sequence with the corresponding target points
in the live image, projective geometric relationships are ex-
ploited to construct a Euclidean homography. The infor-
mation obtained by decomposing the Euclidean homogra-
phy is used to develop a kinematic controller. A Lyapunov-
based analysis is used to develop an adaptive update law
to actively compensate for the lack of depth information
required for the translation error system.

I. Introduction

Wheeled mobile robots (WMRs) are often required to
execute tasks in environments that are unstructured. Due
to the uncertainty in the environment, an intelligent sensor
that can enable autonomous navigation is well motivated.
Given this motivation, researchers initially targeted the use
of a variety of sonar and laser-based sensors. Some initial
work also targeted the use of a fusion of various sensors
to build a map of the environment for WMR navigation
(see [17], [19], [28], [29], [31], and the references within).
While this is still an active area of research, various short-
comings associated with these technologies and recent ad-
vances in image extraction/interpretation technology and
advances in control theory have motivated researchers to
investigate the sole use of camera-based vision systems for
autonomous navigation. For example, using consecutive
image frames and an object database, the authors of [18]
recently proposed a monocular visual servo tracking con-
troller for WMRs based on a linearized system of equa-
tions and Extended Kalman Filtering (EKF) techniques.
Also using EKF techniques on the linearized kinematic
model, the authors of [7] used feedback from a monocular
omnidirectional camera system (similar to [1]) to enable
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wall following, follow-the-leader, and position regulation
tasks. In [16], Hager et al. used a monocular vision system
mounted on a pan-tilt-unit to generate image-Jacobian and
geometry-based controllers by using di erent snapshots of
the target and an epipolar constraint. As stated in [2], a
drawback of the method developed in [16] is that the sys-
tem equations became numerically ill-conditioned for large
pan angles. Given this shortcoming, Burschka and Hager
[2] used a spherical image projection of a monocular vision
system that relied on teaching and replay phases to facili-
tate the estimation of the unknown object height parameter
in the image-Jacobian by solving a least-squares problem.
Spatiotemporal apparent velocities obtained from an op-
tical flow of successive images of an object were used in
[26] to estimate the depth and time-to-contact to develop
a monocular vision guide robot. A similar optical flow tech-
nique was also used in [20]. In [9], Dixon et al. used feed-
back from an uncalibrated, fixed (ceiling-mounted) camera
to develop an adaptive tracking controller for a WMR that
compensated for the parametric uncertainty in the cam-
era and the WMR dynamics. An image-based visual servo
controller that exploits an object model was proposed in
[30] to solve the WMR tracking controller (the regulation
problem was not solved due to restrictions on the reference
trajectory) that adapted for the constant, unknown height
of an object moving in a plane through Lyapunov-based
techniques. In [21] and [33], visual servo controllers were
recently developed for systems with similar underactuated
kinematics as WMRs. Specifically, Mahony and Hamel [21]
developed a semi-global asymptotic visual servoing result
for unmanned aerial vehicles that tracked parallel coplanar
linear visual features while Zhang and Ostrowski [33] used
a vision system to navigate a blimp.

In contrast to the previous image-based visual servo con-
trol approaches, novel homography-based visual servo con-
trol techniques have been recently developed in a series of
papers by Malis and Chaumette (e.g., [3], [4], [22], [23],
[24]). The homography-based approach exploits a combi-
nation of reconstructed Euclidean information and image-
space information in the control design. The Euclidean
information is reconstructed by decoupling the interaction
between translation and rotation components of a homog-
raphy matrix. As stated in [24], some advantages of this
methodology over the aforementioned approaches are that
an accurate Euclidean model of the environment (or tar-
get image) is not required and potential singularities in the
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image-Jacobian are eliminated (i.e., the image-Jacobian for
homography-based visual servo controllers is typically tri-
angular). Motivated by the advantages of the homography-
based strategy, several researchers have recently developed
various regulation controllers for robot manipulators (see
[5], [6], [8], [11], and [13]). In [12], a homography-based
visual servo control strategy was recently developed to as-
ymptotically regulate the position/orientation of a WMR
to a constant Euclidean position defined by a reference im-
age, despite unknown depth information.
In this paper, a homography-based visual servo control

strategy is used to force the Euclidean position/orientation
of a camera mounted on a WMR (i.e., the camera in hand
problem) to track a desired time-varying trajectory defined
by a prerecorded sequence of images. By comparing the
features of an object from a reference image to features of
an object in the current image and the prerecorded se-
quence of images, projective geometric relationships are
exploited to enable the reconstruction of the Euclidean co-
ordinates of the target points with respect to the WMR
coordinate frame. The tracking control objective is natu-
rally defined in terms of the Euclidean space, however, the
translation error is unmeasurable. That is, the Euclidean
reconstruction is scaled by an unknown distance from the
camera/WMR to the target, and while the scaled position
is measurable through the homography, the unscaled posi-
tion error is unmeasurable. To overcome this obstacle, a
Lyapunov-based control strategy is employed that provides
a framework for the construction of an adaptive update
law to actively compensate for the unknown depth-related
scaling constant. While similar techniques as in [12] are
employed for the Euclidean reconstruction from the image
data for the WMR system, new development is provided
in this paper to develop a tracking controller. In contrast
to visual servo methods that linearize the system equations
to facilitate EKF methods, the Lyapunov-based control de-
sign in this paper is based on the full nonlinear kinematic
model of the vision system and the mobile robot system.

II. Problem Formulation

As illustrated in Fig. 1, the origin of the orthogonal
coordinate system F attached to the camera is coincident
with the center of the WMR wheel axis (i.e., the camera is
“in-hand”). As also illustrated in Fig. 1, the xy-axis of F
defines the plane of motion where the x-axis of F is perpen-
dicular to the wheel axis, and the y-axis is parallel to the
wheel axis. The z-axis of F is perpendicular to the plane of
motion and is located at the center of the wheel axis. The
linear velocity of the WMR along the x-axis is denoted by
vc(t) R, and the angular velocity c(t) R is about the
T-axis (see Fig. 1). The desired trajectory is defined by the
prerecorded time-varying trajectory of Fd that is assumed
to be second-order di erentiable. The desired trajectory is
obtained from a prerecorded set of images of a stationary
target viewed by the on-board camera as the WMR moves.
For example, the desired WMR motion could be obtained
as an operator drives the robot via a teach pendant, and
the on-board camera captures and stores the sequence of

images of the stationary target. A fixed orthogonal coor-
dinate system, denoted by F , represents a fixed (i.e., a
single snapshot) reference position and orientation of the
camera relative to the stationary target. Based on the def-
inition of these coordinate frames, the goal of this paper is
to develop a homography-based visual servo controller that
will force F to track the position and orientation trajectory
provided by Fd .
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Fig. 1. Mobile robot coordinate systems.

A. Geometric Model

In this section, geometric relationships are developed be-
tween the coordinate systems F , Fd , and F , and a ref-
erence plane that is defined by three target points Oi
i = 1, 2, 3 that are not collinear. The 3D Euclidean coor-
dinates of Oi expressed in terms of F , Fd , and F as m̄i (t),
m̄di (t), m̄i R3, respectively, are defined as follows (see
Fig. 2)

m̄i(t) ,
£
xi(t) yi(t) zi(t)

¤T
(1)

m̄di(t) ,
£
xdi(t) ydi(t) zdi(t)

¤T
m̄i ,

£
xi yi zi

¤T
under the standard assumption that the distances from
the origin of the respective coordinate frames to the
targets along the focal axis remains positive (i.e.,
xi (t) , xdi(t), xi > 0 where is an arbitrarily small
positive constant). The rotation from F to F is denoted
by R (t) SO(3), and the translation from F to F is
denoted by xf (t) R3 where xf (t) is expressed in F .
Similarly, Rd(t) SO(3) denotes the desired time-varying
rotation from F to Fd , and xfd(t) R3 denotes the de-
sired translation from Fd to F where xfd (t) is expressed
in Fd . Since the motion of the WMR is constrained to a
plane, xf (t) and xfd(t) are defined as follows

xf (t) ,
£
xf1 xf2 0

¤T
(2)

xfd (t) ,
£
xfd1 xfd2 0

¤T
.

From the geometry between the coordinate frames depicted
in Fig. 2, m̄i can be related to m̄i(t) and m̄di(t) as follows

m̄i = xf +Rm̄i m̄di = xfd +Rdm̄i . (3)
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In (3), R (t) and Rd(t) are defined as follows

R ,
cos sin 0
sin cos 0
0 0 1

, (4)

Rd ,
cos d sin d 0
sin d cos d 0
0 0 1

where (t) R denotes the right-handed rotation angle
about zi(t) that aligns the rotation of F with F , and
d(t) R denotes the right-handed rotation angle about
zdi(t) that aligns the rotation of Fd with F . From Fig. 1
and the definitions of (t) and d(t), it is clear that

˙ = c
˙
d = cd . (5)

The rotation angles are assumed to be confined to the fol-
lowing regions

< (t) < < d (t) < . (6)

From the geometry given in Fig. 2, the distance d R
from F to along the unit normal is given by

d = n T m̄i (7)

where n =
£
nx ny nz

¤T R3 denotes the constant unit
normal to . From (7), the relationships in (3) can be
expressed as follows

m̄i =
³
R+

xf
d
n T

´
m̄i m̄di =

³
Rd +

xfd
d
n T

´
m̄i .

(8)
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Fig. 2. Coordinate frame relationships.

B. Euclidean Reconstruction

The relationship given in (3) provides a means to quan-
tify the translational and rotational error between F and
F and between Fd and F . Since the position of F ,
Fd , and F cannot be directly measured, this section il-
lustrates how the normalized Euclidean coordinates of the
target points can be reconstructed by relating multiple im-
ages. Specifically, comparisons are made between an image
acquired from the camera attached to F , the reference im-
age, and the prerecorded sequence of images that define the

trajectory of Fd . To facilitate the subsequent development,
the normalized Euclidean coordinates of Oi expressed in
terms of F , Fd , and F as mi (t), mdi (t), mi R3, re-
spectively, are defined as follows

mi ,
£
1 miy miz

¤T
=
m̄i

xi
mdi ,

£
1 mdiy mdiz

¤T
=
m̄di

xdi

mi ,
£
1 miy miz

¤T
=
m̄i

xi

(9)

where m̄i(t), m̄di(t), and m̄i are introduced in (1). In
addition to having a Euclidean coordinate, each target
point Oi will also have a projected pixel coordinate de-
noted by ui (t) , vi (t) R for F , ui , vi R for F , and
udi (t) , vdi (t) R for Fd , that are defined as elements of
pi (t) R3 (i.e., the actual time-varying image points),
pdi (t) R3 (i.e., the desired image point trajectory), and
pi R3 (i.e., the constant reference image points), respec-
tively, as follows

pi ,
£
1 vi ui

¤T
pdi ,

£
1 vdi udi

¤T (10)

pi ,
£
1 vi ui

¤T
.

The normalized Euclidean coordinates of the target points
are related to the image data through the following pinhole
lens models

pi = Ami pdi = Amdi pi = Ami (11)

where A R3×3 is a known, constant, and invertible in-
trinsic camera calibration matrix.
Given that mi (t), mdi (t), and mi can be obtained from

(11), the rotation and translation between the coordinate
systems can now be related in terms of the normalized
Euclidean coordinates as follows

mi =
xi
xi|{z}

¡
R+ xhn

T
¢| {z }mi

i H

(12)

mdi =
xi
xdi|{z}

¡
Rd + xhdn

T
¢| {z }mi

di Hd

(13)

where i (t) , di (t) R denote the depth ratios, H (t) ,
Hd(t) R3×3 denote Euclidean homographies, and xh (t) ,
xhd (t) R3 denote scaled translation vectors that are de-
fined as follows

xh ,
£
xh1 xh2 0

¤T
=
xf
d

(14)

xhd ,
£
xhd1 xhd2 0

¤T
=
xfd
d

.

By using (4) and (14), the Euclidean homography in (12)
can be rewritten as follows

H =
cos + xh1nx sin + xh1ny xh1nz
sin + xh2nx cos + xh2ny xh2nz

0 0 1
. (15)
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By examining the terms in (15), it is clear that H(t) con-
tains signals that are not directly measurable (e.g., (t),
xh(t), and n ). By expanding Hjk(t) j = 1, 2, k = 1, 2, 3,
the following expressions can be obtained from (9), (12),
and (15)

1 = i

¡
H11 +H12miy +H13miz

¢
(16)

miy = i

¡
H21 +H22miy +H23miz

¢
(17)

miz = imiz . (18)

From (16)-(18), it is clear that three independent equa-
tions with nine unknowns (i.e., Hjk(t) j = 1, 2, k = 1, 2, 3
and i(t) i = 1, 2, 3) can be generated for each target
point. Hence, by determining the normalized Euclidean
coordinate of three target points in F and F from the
image data and (11), the unknown elements of H(t) and
the unknown ratio i(t) can be determined. Likewise, for
the same three target points in Fd and F , the unknown
elements of Hd(t) and the unknown ratio di(t) can be de-
termined. Once the elements of H(t) and Hd(t) are deter-
mined, various techniques (e.g., see [15], [32]) can be used
to decompose the Euclidean homographies to obtain the
rotation and translation components. Hence, R(t), Rd(t),
xh(t), and xhd(t) are all known signals that can be used
for the subsequent control synthesis. Since R(t) and Rd(t)
are known matrices, then (4) can be used to determine (t)
and d(t).
Remark 1: To develop a tracking controller, it is typical

that the desired trajectory is used as a feedforward compo-
nent in the control design. Hence, for a kinematic controller
the desired trajectory is required to be at least first order
di erentiable and at least second order di erentiable for
a dynamic level controller. From the Euclidean homogra-
phy introduced in (13), md(t) can be expressed in terms
of the a priori known, functions di(t), Hd(t), Rd(t), and
xhd(t). Since these signals can be obtained from the pre-
recorded sequence of images, su ciently smooth functions
can be generated for these signals by fitting a su ciently
smooth spline function to the signals. Hence, in practice,
the a priori developed smooth functions di(t), Rd(t), and
xhd(t) can be constructed as bounded functions with su -
ciently bounded time derivatives. Given d(t) and the time
derivative of Rd(t), ˙d(t) can be determined. In the subse-
quent tracking control development, ẋhd1(t) and ˙d(t) will
be used as feedforward control terms.

III. Control Development

The control objective is to ensure that the coordinate
frame F tracks the time-varying trajectory of Fd (i.e.,
m̄i(t) tracks m̄di(t)). This objective is naturally defined in
terms of the Euclidean position/orientation of the WMR.
Specifically, based on the previous development, the trans-
lation and rotation tracking error, denoted by e(t) ,£
e1 e2 e3

¤T R3, is defined as follows

e1 , xh1 xhd1
e2 , xh2 xhd2
e3 , d

(19)

where xh1(t), xh2(t), xhd1(t), and xhd2(t) are introduced in
(14), and (t) and d(t) are introduced in (4). Based on the
definition in (19), it can be shown that the control objective
is achieved if the tracking error e(t) 0. Specifically, it
is clear from (14) that if e1(t) 0 and e2(t) 0, then
xf (t) xfd(t). If e3 0, then it is clear from (4) and (19)
that R(t) Rd(t). If xf (t) xfd(t) and R(t) Rd(t),
then (3) can be used to prove that m̄i(t) m̄di(t).

A. Open-loop Error System

As a means to develop the open-loop tracking error sys-
tem, the time derivative of the Euclidean position xf (t) is
determined as follows [24]

ẋf = v + [xf ]× (20)

where v(t), (t) R3 denote the respective linear and
angular velocity of the WMR expressed in F as

v ,
£
vc 0 0

¤T ,
£
0 0 c

¤T
, (21)

and [xf ]× denotes the 3×3 skew-symmetric form of xf (t).
After substituting (14) into (20), the time derivative of
the translation vector xh (t) can be written in terms of the
linear and angular velocity of the WMR as follows

ẋh =
v

d
+ [xh]× . (22)

After incorporating (21) into (22), the following expression
can be obtained

ẋh1 =
vc
d
+ xh2 c

ẋh2 = xh1 c

(23)

where (14) was utilized. Given that the desired trajectory
is generated from a prerecorded set of images taken by
the on-board camera as the WMR was moving, a similar
expression as (22) can be developed as follows

ẋfd =
£
vcd 0 0

¤T
+ [xfd]×

£
0 0 cd

¤T
(24)

where vcd(t), cd(t) R denote the respective desired lin-
ear1 and angular velocity of the WMR expressed in Fd .
After substituting (14) into (24), the time derivative of the
translation vector xhd (t) can be written as follows

ẋhd1 =
vcd
d
+ xhd2 cd

ẋhd2 = xhd1 cd

(25)

where (14) was utilized. After taking the time derivative
of (19) and utilizing (5) and (23), the following open-loop
error system can be obtained

d ė1 = vc + d (xh2 c ẋhd1)

ė2 =
³
xh1 c + xhd1 ˙d

´
ė3 =

³
c + ˙d

´ (26)

1Note that vcd(t) is not measurable.
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where the definition of e2(t) given in (19), and the second
equation of (25) was utilized. To facilitate the subsequent
development, the auxiliary variable ē2 (t) R is defined as

ē2 , e2 xhd1e3. (27)

After taking the time derivative of (27) and utilizing (26),
the following expression is obtained

.
ē2 = (e1 c + ẋhd1e3) . (28)

Based on (27), it is clear that if ē2(t), e3(t) 0, then
e2(t) 0. Based on this observation and the open-loop
dynamics given in (28), the following control development
is based on the desire to prove that e1 (t) , ē2 (t) , e3 (t) are
asymptotically driven to zero.

B. Closed-Loop Error System

Based on the open-loop error systems in (26) and (28),
the linear and angular velocity kinematic control inputs for
the WMR are designed as follows

vc , kve1 ē2 c + d̂ (xh2 c ẋhd1) (29)

c , k e3 ˙
d ẋhd1ē2 (30)

where kv, k R denote positive, constant control gains.
In (29), the parameter update law d̂ (t) R is generated
by the following di erential equation

.

d̂ , 1e1(xh2 c ẋhd1) (31)

where 1 R is a positive, constant adaptation gain. After
substituting the kinematic control signals designed in (29)
and (30) into (26), the following closed-loop error systems
are obtained

d ė1 = kve1 + ē2 c + d̃ (xh2 c ẋhd1)
.
ē2 = (e1 c + ẋhd1e3)
ė3 = k e3 + ẋhd1ē2

(32)

where (28) was utilized and the depth-related parameter
estimation error d̃ (t) R is defined as follows

d̃ , d d̂ . (33)

IV. Stability Analysis

Theorem 1: The adaptive update law defined in (31)
along with the control input designed in (29) and (30) en-
sure that the WMR tracking error e (t) is asymptotically
driven to zero in the sense that

lim
t

e (t) = 0 (34)

provided the time derivative of the desired trajectory sat-
isfies the following condition

lim
t

ẋhd1 6= 0. (35)

Proof: To prove Theorem 1, the non-negative function
V (t) R is defined as follows

V , 1

2
d e21 +

1

2
ē22 +

1

2
e23 +

1

2 1

d̃ 2 . (36)

The following simplified expression can be obtained by tak-
ing the time derivative of (36), substituting the closed-loop
dynamics in (32) into the resulting expression, and then
cancelling common terms

V̇ = kve
2
1 + e1d̃ (xh2 c ẋhd1) k e23

1

1

d̃
.

d̂ . (37)

After substituting (31) into (37), the following expression
can be obtained

V̇ = kve
2
1 k e23 . (38)

From (36) and (38), it is clear that e1(t), ē2 (t), e3 (t),
d̃ (t) L and that e1(t), e3 (t) L . Since d̃ (t) L
and d is a constant, the expression in (33) can be used
to determine that d̂ (t) L . From the assumption that
xhd1(t), ẋhd1(t), xhd2(t), d(t), and ˙d(t) are constructed
as bounded functions, and the fact that ē2 (t), e3 (t) L ,
the expressions in (19), (27), and (30) can be used to prove
that e2 (t), xh1(t), xh2(t), (t), c(t) L . Based on the
previous development, the expressions in (29), (31), and

(32) can be used to conclude that vc(t),
.

d̂ (t), ė1(t),
.
ē2 (t),

ė3(t) L . Based on the fact that e1(t), e3 (t), ė1(t),
ė3(t) L and that e1(t), e3 (t) L , Barbalat’s lemma
[25] can be employed to prove that

lim
t

e1(t), e3(t) = 0 . (39)

From (39) and the fact that the signal ẋhd1(t)ē2(t) is uni-
formly continuous (i.e., ẋhd1(t), ẍhd1(t), ē2(t),

.
ē2 (t)

L ), the Extended Barbalat’s Lemma [10] can be applied
to the last equation in (32) to prove that

lim
t

ė3(t) = 0 (40)

and that
lim
t

ẋhd1(t)ē2(t) = 0 . (41)

If the desired trajectory satisfies (35), then (41) can be used
to prove that

lim
t

ē2(t) = 0 . (42)

Based on the definition of ē2(t) given in (27), the results in
(39) and (42) can be used to conclude that

lim
t

e2(t) = 0 (43)

provided the condition in (35) is satisfied. ¤
Remark 2: The condition given in (35) is in terms of the

time derivative of the desired translation vector. Typically,
for WMR tracking problems, this assumption is expressed
in terms of the desired linear and angular velocity of the
WMR. To this end, (25) can be substituted into (35) to
obtain the following condition

lim
t

vcd(t)

d
6= xhd2(t) cd(t). (44)

The condition in (44) is comparable to typical WMR track-
ing results that restrict the desired linear and angular ve-
locity. For an in-depth discussion of this type of restriction
including related previous results see [10].

1818



V. Conclusions

In this paper, the position/orientation of a WMR is
forced to track a desired time-varying trajectory defined
by a prerecorded sequence of images. To achieve the re-
sult, multiple views of three target points were used to
develop Euclidean homographies. By decomposing the
Euclidean homographies into separate translation and ro-
tation components, reconstructed Euclidean information
was obtained for the control development. A Lyapunov-
based stability argument was used to design an adaptive
update law to compensate for the fact that the recon-
structed translation signal was scaled by an unknown depth
parameter. The impact that the development in this pa-
per makes is that a new analytical approach has been de-
veloped using homography-based concepts to enable the
position/orientation of a WMR subject to nonholonomic
constraints to track a desired trajectory generated from
a sequence of images, despite the lack of depth measure-
ments. Our future e orts will target experimental demon-
stration of the developed controller and the development of
analytical Lyapunov-based methods for WMR visual servo
tracking using an o -board camera similar to the problem
in [9] without the restriction that the camera by fixed per-
pendicular to the WMR plane of motion.
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