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ABSTRACT

Recent advances in acoustic localization have combined
the advantages of the traditional methods of beamform-
ing and time-delay estimation, leading to techniques
that are both accurate and fast. We present a unifying
framework that reveals the relationships between beam-
forming, time-delay estimation, Bayesian formulation,
hemisphere sampling, and accumulated correlation. We
then experimentally compare the algorithms, on both
compact and distributed microphone arrays, showing
that the recent technique of accumulated correlation,
although much less computationally expensive, exhibits
performance comparable to that of beamforming.
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1. INTRODUCTION

Traditionally, two common methods for determining
the location of a sound source have been beamforming
[14, 6, 8] and time-delay estimation (TDE) [4, 5, 13, 11].
Beamforming generally produces better results because
it takes all the information into account before making a
decision, while TDE techniques are more computation-
ally efficient because they rely upon the fast operation
of cross-correlation.

Recently an algorithm called accumulated correlation
was proposed to combine the advantages of these two
approaches [2]. Like beamforming, it is accurate be-
cause it takes all the information into account before
making a decision. Like TDE, it is computationally effi-
cient because it uses cross-correlation as its basic opera-
tion. Accumulated correlation builds upon the success-
ful hemisphere sampling algorithm [1] that was shown to
be more accurate than traditional TDE methods with-
out significantly more computation. Unlike the latter,
though, accumulated correlation makes no plane-wave
assumption, thus making it applicable to both compact
and distributed microphone arrays.

In this paper we place accumulated correlation into a
unified framework that highlights the relationships be-
tween it and the classical techniques of beamforming
and time-delay estimation, as well as the Bayesian for-
mulation and hemipshere sampling. We also provide an
experimental analysis of the algorithm, answering some
of the questions that remain from [2]. For example, we
show that the algorithm not only is applicable to dis-
tributed microphone arrays in theory, but that it also
works well on such arrays in practice. We demonstrate
on real audio data that the algorithm performs as well
as beamforming on both compact and distributed mi-
crophone arrays.

2. ALGORITHMS

The algorithms under consideration in this paper fall
into two categories: traditional techniques and recent
advances.

2.1 Traditional techniques

Traditional delay-and-sum beamforming computes the
likelihood that a sound source is at location q by mea-
suring the energy of the reconstruted signal at that lo-
cation:

Lbeam(q) =

∫ t0+ W

2

t0−
W

2

[

N
∑

i=1

xi(t + τi,q)

]2

dt,

where N is the number of microphones, xi is the signal
received by the ith microphone, τi,q is the travel time
for sound to reach microphone i from location q, and
t0 and W are the center and width of the integration
window, respectively [6, 7, 8, 14]. In [2] it was shown
that this equation can be expressed as the sum of two
terms: Lbeam(q) = 2VC(q)+VE(q), where VC measures
the pairwise similarity between the received signals, and
VE is the combined energy in all the signals:
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Delay-and-sum beamforming is similar to a Bayesian
formulation: LBayes(q) = 1

N
[VC(q) + (1 − N)VE(q)]

[2]. In fact, in the context of maximizing the likelihood,
the two formulations are identical except for how they
weight the energy term. When the signals are stationary
this energy term will have no effect on the likelihoods
and the Bayesian and beamforming equations become
identical.

A classic alternative to beamforming is time-delay
estimation (TDE), which involves two steps. First, the
cross-correlation is computed between each microphone
pair:

Rij(τ) =

∫ t′
0
+ W

2

t′
0
−W

2

xi(t)xj(t − τ) dt, (1)

where t′0 is the approximate time at which the sound
was heard as opposed to the time t0 at which the sound
was generated [2]. By applying Rij to a range of discrete

values, a cross-correlation vector vij of length 2⌊dr
c
⌋+1



is generated, where d is the distance between the two
microphones, r is the sampling rate, and c is the speed
of sound. Each element of v indicates the likelihood
that the sound source is located near a half-hyperboloid
centered at the midpoint between the two microphones,
with its axis of symmetry the line connecting the two
microphones.

The second step of TDE methods estimates the lo-
cation of the sound source using the peaks of the cross-
correlation vectors. For this step a number of ap-
proaches have been proposed [4, 5, 11, 13].

2.2 Recent advances

A few years ago, a technique for compact microphone
arrays called hemisphere sampling was introduced [1].
Like TDE, the first step of hemisphere sampling is to
compute the cross-correlations between pairs of micro-
phone signals using Eq. (1). In the second step, however,
instead of using just the peaks of the cross-correlation
vectors, the direction to the sound source is determined
by mapping all the elements of the vectors onto a hemi-
sphere surrounding the microphone array. The peak of
the entire hemisphere then indicates the sound source
direction. By accumulating all the values in a common
coordinate system, this method follows the principle of
least commitment because it delays the decision as long
as possible, resulting in more robust behavior. The in-
creased accuracy of hemisphere sampling over the linear
intersection variant of TDE [4] was demonstrated in [1].

More recently, this concept of accumulating correla-
tion vectors by mapping them to a common coordinate
system was extended to handle arbitrary microphone
array geometries, in a technique called accumulated cor-
relation [2]. The resulting computation is surprisingly
simple:

Lcorr(q) =

N
∑

i=1

N
∑

j=i+1

Rij(τj,q − τi,q), (2)

where Rij again comes from Eq. (1). Like TDE and
hemisphere sampling, accumulated correlation is a two-
step process: first the cross-correlation vector is com-
puted for each microphone pair, then all the elements
of the vectors are mapped onto a common coordinate
system to yield a likelihood for each candidate location.

2.3 Discussion

Not only is there a natural connection between TDE
and accumulated correlation due to their shared use
of cross-correlation as the basic operation, but there is
also a connection between accumulated correlation and
delay-and-sum beamforming. It can be shown [2] that
Lcorr(q) = V ′

C , where V ′
C is identical to VC except for a

change of the integration limits (by substituting t′0 − τi

for t0 in the equation for VC above).
In comparing VC and V ′

C , a key parame-
ter is the maximum relative discrepancy τmax =
maxi∈{1,...,N},q∈Q |τ̄ − τi,q|/W , where τ̄ is the average
time delay between any microphone and any candidate
sound source location and Q is the set of such locations.
If this maximum relative discrepancy is small then V ′

C

and VC will be approximately equal, but as it increases
the two alternatives diverge.

Because it is based on the fast operation of cross-
correlation, V ′

C in many common scenarios is more com-
putationally efficient than VC , sometimes by several or-
ders of magnitude (see Section 4). In fact, exhaus-
tively searching the space using V ′

C can often be per-
formed in real time. Thus, when the maximum relative
discrepancy is small, V ′

C obviates the need for compli-
cated search strategies [8] or multi-hypothesis methods
[12, 14] that are often needed to make beamforming
practical. Moreover, since the search is exhaustive, tem-
poral smoothing of either VC or V ′

C reduces the effects
of spurious global peaks.

2.4 Frequency-domain formulations

It is well-known that cross-correlation in the time do-
main is equivalent to multiplication in the frequency
domain:

Rij(τ) = F−1{Xi(f)X∗
j (f)}, (3)

where

Xi(f) = F{xi(t)} =

∫ t′
0
+ W

2

t′
0
−W

2

xi(t)e
−j2πft dt

is the Fourier transform of xi(t), and ∗ denotes the com-
plex conjugate. Notice that the window is centered at
t′0, as in Eq. (1). Combining Eqs. (3) and (2) yields a
frequency-domain formulation of accumulated correla-
tion, or V ′

C .
When formulating beamforming in the frequency do-

main [8, 14], careful attention must be paid to the limits
of the integral to avoid confusing VC with V ′

C . SRP-
PHAT, for example, where the SRP stands for “steered
response power [beamformer],” is actually a frequency-
domain formulation of accumulated correlation with a
PHAT prefilter and an energy term [7]. The derivation
of SRP-PHAT assumes that the maximum relative dis-
crepancy is small, thus enabling VC to be approximated
by V ′

C .

2.5 Prefilters

To reduce the effect of reverberation, a common practice
is to apply a prefilter to the signals such as the phase
transform (PHAT): Xi(f)/|Xi(f)| [7, 10, 9]. By dividing
the signal by its magnitude, PHAT treats all frequencies
the same. PHAT can be applied either to time-domain
or frequency-domain formulations.

3. UNIFYING FRAMEWORK

All of the approaches above can be written as follows:

L(q) = G

(

∫ T (i,q)+ W

2

T (i,q)−W

2

xij,q(t) dt

)

+ αVE ,

where xij,q(t) = xi(t)xj(t − τi,q + τj,q). G(·) is the
function that combines the results from the different
microphone pairs, such as GΣ =

∑N

i=1

∑N

j=i+1, GΣΣ =

GΣ +
∑N

j=1

∑N

i=j+1, GLI for linear intersection [4], GHS

for hemisphere sampling [1], and so on. The function
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Figure 1: Results of algorithms on compact array (a) without PHAT and (b) with PHAT. The top row shows
the pan angle (φ), while the bottom row shows the tilt angle (θ). (c) Top-down view of the room used in the
experiments (4.3m × 4.7m × 2.6m), along with the microphones (indicated by stars) of the distributed array. For
the distributed experiments the dots show the candidate locations considered by the algorithms, the circles show
the two actual sound source locations (A and B), and the average computed locations of the algorithms are shown
using the same symbols as the other figures.

T (i,q) indicates the center of the window and is gener-
ally one of two values: TG = t0 + τi,q (used by VC), or
TH = t′0 (used by V ′

C).
The algorithms, then, differ by their choice of the

functions G and T and parameter α, as summarized in
the following table:

method G T α

Bayesian [2] GΣ TG (1 − N)/2
beamforming [14, 6, 8] GΣ TG 1/2
zero energy GΣ TG 0
accumulated correlation [2] GΣ TH 0
SRP-PHAT [7] GΣΣ TH 1
hemisphere sampling [1] GHS TH 0
linear intersection [4] GLI TH 0

From this table we see that acoustic localization al-
gorithms can generally be divided into two categories:
those using TG and those using TH . The latter com-
prises all TDE methods [4, 5, 13, 11] that, due to space
constraints, are omitted from the table. The role of ac-
cumulated correlation is clear: Like the TDE methods
it uses TH and is therefore fast, and like beamforming
it uses GΣ, making it robust. Keep in mind that, for
any algorithm using TG, GΣ can be replaced by GΣΣ if α
is multiplied by two. Thus, SRP-PHAT is identical to
beamforming except for T .1

1Another difference is the PHAT prefilter, but this is a separate
computation that can be applied to any of the algorithms in the
table.

4. EXPERIMENTS

In this section we compare the performance of the al-
gorithms on compact and distributed arrays of micro-
phones in a real environment. All experiments were
conducted in the conference room shown in Figure 1(c)
using a sampling rate of 44.1 kHz. Reverberation time
of the room was approximately 200 ms, results were
smoothed with a temporal half-life of 250 ms, and
ground truth was estimated by hand using a tape mea-
sure.

4.1 Compact array

In the first experiment, a compact array of four omni-
directional microphones were arranged in a square with
a distance of 15cm between opposing microphones. The
maximum relative discrepancy was 1.3%. The array was
placed horizontally on a large table in the center of the
room, while a computer speaker played a recording of a
male voice counting from one to ten repeatedly.

Twelve trials were captured by increasing the volume
on the speaker in each succeeding trial, thereby increas-
ing the signal-to-noise ratio (SNR). For each trial the
algorithms of accumulated correlation, hemisphere sam-
pling, beamforming, Bayesian, and zero energy (which is
simply VC) were used to compute the pan and tilt angles
from the microphone array to the sound source. The an-
gles, averaged over all non-overlapping 55-ms windows
for each trial, are shown in Figure 1(a) and (b) both
with and without the PHAT prefilter. For V ′

C PHAT
was computed on the cross-correlation signal, while for



— location A — — location B —
Algorithm µx µy µx µy

acc corr 7 26 4 34
beamforming 24 0 16 45

Bayesian 24 10 18 47
zero energy 21 3 16 45

Table 1: Absolute error in x and y (cm) for the dis-
tributed array experiments.

VC it was computed on the individual signals. A band-
pass filter of 3 to 4 kHz was used throughout [6, 14]. On
a 550 MHz PIII, the computing time per 55-ms window
was 6 ms for accumulated correlation and 3969 ms for
beamforming.

As the SNR increased, the algorithms generally per-
formed better, as one would expect. Somewhat surpris-
ingly, better results were obtained without PHAT. This
decrease in performance was perhaps due to the fact that
PHAT accentuates those parts of the signal with low
SNR [9, 3]. Without PHAT, all algorithms performed
well after the SNR reached 2 dB (trial 6), the only ex-
ception being the hemisphere sampling algorithm which
was never able to estimate the tilt accurately because of
its plane-wave assumption.

4.2 Distributed array

In the next experiment eight microphones were arranged
in four pairs, one pair per corner of the room, as shown
in Figure 1(c). The maximum relative discrepancy was
8.5%. A computer speaker played the same audio file
as before at two separate locations, one near the cen-
ter of the room at (2.1, 2.4, 1.5)m and one off-center at
(0.8, 2.8, 1.7)m, with average SNR of 2.3 dB and 2.6 dB,
respectively. The bandpass filter was used, but PHAT
was not. The computing time per 100-ms window was
146 ms for accumulated correlation and 7452 ms for
beamforming.

The results obtained by averaging the locations of
each non-overlapping 100-ms window in both x and y
are shown in Figure 1(c) and the absolute errors of the
locations in Table 1. The errors are on the order of 0 to
47 cm, while the difference in error between algorithms
along any given axis is between 2 and 26 cm. Although
accumulated correlation exhibits the least error overall,
the differences between the algorithms are too small rel-
ative to the accuracy of ground truth (the width of the
speaker itself was 9 cm) to declare a clear winner. All
algorithms perform comparably.

5. CONCLUSION

In this paper we have provided a unifying framework for
acoustic localization algorithms including beamforming,
TDE, hemisphere sampling, the Bayesian formulation,
and accumulated correlation. The algorithms were ex-
perimentally compared on both a compact and a dis-
tributed array of microphones in a real environment. Al-
though accumulated correlation requires orders of mag-
nitude less computation, it performs comparably to the
accurate but expensive method of beamforming.
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