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Abstract

We present an approach to visual tracking based on di-
viding a target into multiple regions, or fragments. The
target is represented by a Gaussian mixture model in a
joint feature-spatial space, with each ellipsoid correspond-
ing to a different fragment. The fragments are automati-
cally adapted to the image data, being selected by an effi-
cient region-growing procedure and updated according to
a weighted average of the past and present image statis-
tics. Modeling of target and background are performed in a
Chan-Vese manner, using the framework of level sets to pre-
serve accurate boundaries of the target. The extracted tar-
get boundaries are used to learn the dynamic shape of the
target over time, enabling tracking to continue under total
occlusion. Experimental results on a number of challenging
sequences demonstrate the effectiveness of the technique.
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1. Introduction

Recent interest in visual tracking has centered around
on-line learning of multiple cues to adaptively select the
most discriminative ones. With this focus, significant
progress has been achieved by algorithms such as those of
Avidan [2], Collins et al. [6], and Grabneret al. [10]. In
these approaches, tracking is formulated as a classification
problem in which the probability of each pixel belonging to
the target is computed. While the results have been promis-
ing, several limitations remain:

• Important but secondary cues are often ignored be-
cause of the employment of linear classifiers. As a
result, even though the object may be tracked, many
pixels that do not correspond to the dominant cue are
misclassified when the data are not linearly separable.
This limitation prevents an accurate determination of
the target object’s contour.

• Occlusion of the target can cause the learner to adapt
to occluding surfaces, thus causing the model to drift

from the target. A more accurate contour representa-
tion would enable such errors to be prevented.

• Spatial information that captures the joint probability
of pixels is often ignored. While many tracking ap-
proaches use local spatial information in the form of
texture measures or spatial means [2, 10], such meth-
ods do not take advantage of the wealth of information
available in the global spatial arrangement of the pix-
els in the target which have proved useful in classic
template-based and recent techniques [12, 14].

In this paper we present a technique that overcomes these
limitations. Like Adamet al. [1], we split the target into a
number of fragments to preserve the spatial relationships
of the pixels. Unlike their work, however, our fragments
are adaptively chosen according to the image data, by clus-
tering pixels with similar appearance, rather than using a
fixed arrangement of rectangles. This adaptive fragmenta-
tion captures all the secondary cues and also ensures that
each fragment captures a single mode of the distribution.
We classify individual pixels, as in [2, 6, 10], but by in-
corporating multiple fragments we are better able to pre-
serve the shape of multi-modal targets. The boundary is
represented by a level set using a Chan-Vese [5] model that
enables level set tracking to be formulated in a Bayesian
manner and leads to more stable convergence of the algo-
rithm. This work extends the variational work of [21] by
allowing multimodal backgrounds, extreme shape changes,
and unpredictable motion. To address the problem of dras-
tically moving targets with untextured regions, the recently
proposed approach of [3] is employed to impose a global
smoothness term in order to produce accurate sparse mo-
tion flow vectors for each fragment. The fragment models
are updated automatically using the estimated contour and
the image data, and the previous shapes are used to track the
object through occlusion.

2. Approach

To represent the target being tracked, we use the formu-
lation of level sets due to their numerical stability and their



ability to accurately represent a generic contour [15, 4]. Let
Γ(s) = [x(s) y(s) ]T , s ∈ [0, 1], be a closed curve in
R

2, and define an implicit functionφ(x, y) such that the
zeroth level set ofφ is Γ, i.e., φ(x, y) = 0 if and only if
Γ(s) = [x, y]T for somes ∈ [0, 1]. Let R− be the region
inside the curve (whereφ > 0) andR+ the region outside
the curve (whereφ < 0).

Our goal is to estimate the contour from a sequence of
images. LetIt : x → R

m be the image at timet that maps
a pixelx = [x y ]

T
∈ R

2 to a value, where the value is a
scalar in the case of a grayscale image (m = 1) or a three-
element vector for an RGB image (m = 3). The value could
also be a larger vector resulting from applying a bank of
texture filters to the neighborhood surrounding the pixel, or
some combination of these raw and/or preprocessed quanti-
ties. Similar to [21], we use Bayes’ rule and an assumption
that the measurements are independent of each other and of
the dynamical process to model the probability of the con-
tour Γ at timet given the previous contoursΓ0:t−1 and all
the measurementsI0:t of the causal system as

p(Γt|I0:t,Γ0:t−1) ∝ p(I+
t |Γt)

︸ ︷︷ ︸

target

p(I−t |Γt)
︸ ︷︷ ︸

background

p(Γt|Γ0:t−1)
︸ ︷︷ ︸

shape

,

(1)
whereI+

t = {ξI(x) : x ∈ R+} captures the pixels inside
Γt, I−t = {ξI(x) : x ∈ R−} captures the pixels outsideΓt,
andξI(x) = [ xT I(x)T ]

T is a vector containing the pixel
coordinates coupled with their image measurements.

2.1. Fragment modeling

Assuming conditional independence among the pixels,
the joint probability of the pixels in a region is given by

p(I?
t |Γt) =

∏

x∈R?

p?(ξI(x)|Γt), (2)

where? ∈ {−,+}. One way to represent the probability
of a pixelξI(x) is to measure its signed distance to a sepa-
rating hyperplane inRn, wheren = m + 2, as in [2, 6], or
using a single covariance matrix, as in [16]. A slightly more
general approach would be to measure its Mahalanobis dis-
tance to a pair of Gaussian ellipsoids representing the tar-
get and background. None of these approaches, however,
is able to capture the subtle complexities of multi-modal
regions. As a result, we instead represent both the target
and background appearance using a set offragmentsin the
joint feature-spatial space, where each fragment is a sepa-
rate Gaussian ellipsoid, similar to [11]. Lettingy = ξI(x)
for brevity, the likelihood of an individual pixel is then given
by a Gaussian mixture model (GMM):

p?(y|Γt) =

k?∑

j=1

πjp?(y|Γt, j), (3)

· · ·

(a)

(b) (c) (d)
Figure 1. (a) Probabilities determined by individual fragments are
combined to compute (b) our strength image. For comparison,
the strength image computed using (c) a single Gaussian [16] and
(d) a linear separation over a linear combination of multiple color
spaces [6] are also shown. Our fragment-based GMM representa-
tion more effectively represents the multi-colored target.

whereπj = p(j|Γt) is the probability that the pixel was
drawn from thejth fragment,k? is the number of fragments
in the target or background,

∑k?

j=1 πj = 1, and

p?(y|Γt, j) = η exp

{

−
1

2
(y − µ?

j )
T

(
Σ?

j

)−1
(y − µ?

j )

}

,

(4)
whereµ?

j ∈ R
n is the mean andΣ?

j then×n covariance ma-
trix of the jth fragment in the target or background model
(depending upon?), andη is the Gaussian normalization
constant.

2.2. Computing the strength image

We follow the recent approach of formulating the ob-
ject tracking problem as one of binary classification be-
tween target and background pixels [2, 10]. In this ap-
proach, a strength image is produced indicating the prob-
ability of each pixel belonging to the target being tracked.
The strength image is computed using the log ratio of the
probabilities:

S(x) = log

(
p+(x)

p−(x)

)

= Ψ−(x) − Ψ+(x), (5)

whereΨ?(x) = − log p?(x). Positive values in the strength
image indicate pixels that are more likely to belong to the
target than to the background, and vice versa for negative
values. An example strength image is shown in Figure 1,
illustrating the improvement achieved by considering spa-
tial information. The strength image is used to update the
implicit function, which enables the level set machinery to
enforce smoothness on the resulting object shape.

2.3. Segmentation

Our fragment-based representation of the target is
similar to that of Adamet al. [1] but with two signifi-
cant differences. First, we use fragments to model the



background as well as the target, and secondly, our
fragments are automatically determined and adapted by
the image data rather than being fixed and hardcoded.
The challenge is to compute the model parameters
µ+

1 , . . . , µ+
k+

,Σ+
1 , . . . ,Σ+

k+
, µ−

1 , . . . , µ−

k
−

,Σ−

1 , . . . ,Σ−

k
−

from the current contourΓt. This is essentially a problem
of segmentation. We tried the graph-based algorithm of [9]
but found it to unacceptably merge regions with distinct
colors. We also experimented with mean-shift segmentation
[7], but it was not only too slow for a tracking application
but it also tended to oversegment the image. In addition, we
considered the greedy Expectation-Maximization approach
of Vlassis et al. [20], but its estimate of the number of
components was too unreliable for our purposes.

Instead, we devised a region-growing algorithm, in-
spired by work on Spatially Variant Finite Mixture Models
(SVFMM) [17, 18]. Initially a pixel in the image is selected
at random, and a single fragment is created to hold the pixel.
Neighboring pixels are added to the segment if they are
within τ standard deviations of the Gaussian model of the
fragment, with an appropriate relaxing of the threshold for
small regions that do not yet have enough pixels for their
model to be reliable. The meanµ?

j and covarianceΣ?
j are

updated efficiently using a running accumulation of first-
and second-order statistics. Once the fragment has finished
growing, a new pixel is selected at random, and the proce-
dure is repeated for a new fragment. This process contin-
ues until all pixels have been added to a fragment, at which
point small fragments are discarded and the remaining frag-
ments are labeled as target or background depending upon
whether the majority of pixels are within or without a man-
ually drawn initial contourΓ0, respectively. Any fragment
for which the pixels are roughly evenly distributed is split
alongΓ0 to form two fragments, one labeled foreground and
the other labeled background. Finally, we chooseπj based
on the size of the fragments.

This efficient, simple procedure is quite effective at di-
viding the target and background into multiple fragments,
as shown in Figure 2, and it is much faster than time-
consuming EM [11]. For comparison, we also show the
output of graph-based and mean-shift segmentations in Fig-
ure 3.

2.4. Level set formulation

Maximizing the probability of (1) is equivalent to min-
imizing the following energy functional over the level set
function [5]:

E(φ) =

∫

R+

Ψ+(x)dx +

∫

R−

Ψ−(x)dx + µ`(Γ), (6)

whereµ is a scalar that weights the relative importance of
the shape term, which is assumed for the moment to con-
sist only in measuring̀(Γ), the length of the curve. At

(a) (b)

(c) (d)
Figure 2. (a) Image of Elmo. (b) Foreground regions and (d) back-
ground regions found by our segmentation algorithm. (c) The six
foreground spatial ellipsoids overlaid.

Figure 3. The output of competing algorithms on the Elmo im-
age, for comparison. LEFT: Graph-based segmentation [9] acci-
dentally merges regions with distinct colors. RIGHT: Mean-shift
segmentation [7], even with a large scale parameter, oversegments
the image.

this point we introduce the regularized Heaviside function
H(z) = 1

1+e−z as a differentiable threshold operator to
rewrite the above as

E(φ) =

∫

Ω

H(φ)Ψ+(x)+(1−H(φ))Ψ−(x)+µ|∇H(φ)|dx,

(7)
where`(Γ) =

∫

Ω
|∇H(φ)|dx, andΩ = R+ ∪ R− is the

image domain. WithE =
∫

Ω
F (x, y, φ, φx, φy)dx, the as-

sociated Euler-Lagrange equation is given by

0 =
∂F

∂φ
−

∂

∂x

[
∂F

∂φx

]

−
∂

∂y

[
∂F

∂φy

]

= h(φ)

(

Ψ+(x) − Ψ−(x) − µdiv

(
∇φ

|∇φ|

))

,

where φx = ∂φ/∂x, φy = ∂φ/∂y, h(φ) = ∂H/∂φ,
∇φ = [φx φy ]

T is the gradient ofφ, and div is the di-
vergence operator. To avoid the difficulty of solving this
PDE explicitly forφ, we instead take the value on the right-
hand side as an indication of the error, and apply gradient



descent iterations [5] with

φ(k+1) = φ(k)+|∇φ|

(

Ψ−(x) − Ψ+(x) + µdiv

(
∇φ

|∇φ|

))

,

(8)
wherek is the iteration number, and we have used the ap-
proximationh(φ) ≈ |∇φ|, which is accurate as long as the
level set function is smooth away from the boundary. The
sign in the equation comes from the convention thatφ > 0
inside the boundary.

Note that unlike the traditional level set formulation,
ours is not based upon intensity edges. Rather, we have
adopted the Chan-Vese approach [5] of modeling the fore-
ground and background regions explicitly. This approach
results in a large basin of attraction, so that the iterations
above will converge to the target from a wide variety of ini-
tial curves, without being significantly distracted by local
noise in the data. Since the curve evolution is not required
to be monotonic, the initial curve may be inside the target,
outside the target, or some combination of the two. Note
that our multi-modal spatial-feature models are able to cap-
ture much more complex targets than [5], in which the fore-
ground and background regions are modeled simply by their
average grayscale values.

2.5. Fragment motion

While the minimization above is not extremely sensitive
to the initial contour, nevertheless it is beneficial for theco-
ordinate systems of the target and the model fragments to be
approximately aligned. Such alignment increases the accu-
racy of the strength image, due to the use of spatial informa-
tion in the joint spatial-feature vectors. As a result we seek
to recover,prior to computing the strength image, approx-
imate motion vectors between the previous and current im-
age frame for each fragment:u?

i = (u?
i , v

?
i ), i = 1, . . . , k?.

One way to solve this alignment problem would be to
compute the motion of the target using traditional motion
estimation techniques. However, existing dense motion al-
gorithms do not perform well on complex imagery in which
highly non-rigid, untextured objects undergo drastic motion
changes from frame to frame, such as the videos considered
in this work. Moreover, dense motion computation wastes
precious resources for this application, since we only need
approximate alignment between the fragments. In a sim-
ilar manner, traditional sparse feature tracking algorithms
are not suitable for recovering the motions of the individual
fragments. Due to their independent handling of the fea-
tures, such algorithms often yield some percentage of unre-
liable estimates.

To solve this dilemma, we utilize the recent joint feature
tracking approach of [3]. Starting with the well-knownop-
tic flow constraint equation

f(u, v; I) = Ixu + Iyv + It = 0, (9)

the traditional Lucas-Kanade and Horn-Schunck formula-
tions are combined into a single differential framework. The
functional to be minimized is given by

EJLK =

N∑

i=1

(ED(i) + λiES(i)), (10)

whereN is the number of feature points, and the data and
smoothness terms are

ED(i) = Kρ ∗
(

(f(ui, vi; I))
2
)

(11)

ES(i) =
(
(ui − ûi)

2 + (vi − v̂i)
2
)
. (12)

In these equations, the energy of featurei is determined by
how well its motion(ui, vi)

T matches the local image data,
and by how far the motion deviates from the expected value
(ûi, v̂i)

T . The latter is computed by fitting an affine motion
model to the neighboring features, where the connections
between features are computed by a Delaunay triangulation.

DifferentiatingEJLK with respect to the motion vectors
(ui, vi)

T , i = 1, . . . , N , and setting the derivatives to zero,
yields a2N × 2N sparse matrix equation, whose(2i− 1)th
and(2i)th rows are given by

Ziui = ei, (13)

where

Zi =

[
λi + Kρ ∗ (IxIx) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) λi + Kρ ∗ (IyIy)

]

ei =

[
λiûi − Kρ ∗ (IxIt)
λiv̂i − Kρ ∗ (IyIt)

]

.

This sparse system of equations can be solved using Ja-
cobi iterations of the form

ũ
(k+1)
i = û

(k)
i −

Jxxû
(k)
i + Jxy v̂

(k)
i + Jxt

λi + Jxx + Jyy

(14)

ṽ
(k+1)
i = v̂

(k)
i −

Jxyû
(k)
i + Jyy v̂

(k)
i + Jyt

λi + Jxx + Jyy

, (15)

where Jxx = Kρ ∗ (I2
x), Jxy = Kρ ∗ (IxIy), Jxt =

Kρ ∗ (IxIt), Jyy = Kρ ∗ (I2
y ), andJyt = Kρ ∗ (IyIt).

In practice, Gauss-Seidel iterations with successive overre-
laxation yield increased convergence. An example output is
shown in Figure 4.

Once theN features have been tracked, the mean mo-
tion vector of each fragmentu?

i is computed using the mo-
tions of the features within the fragment. Note that there
is little risk to this averaging, since outliers are avoided
by the smoothness term incorporated by the joint Lucas-
Kanade approach, which enables features to be tracked
even in untextured areas, as shown in [3]. Feature se-
lection is determined by those image locations for which
max(emin, ηemax) is above a threshold, whereemin and
emax are the two eigenvalues of the2 × 2 gradient covari-
ance matrix, andη < 1 is a scaling factor.



Figure 4. Joint Lucas-Kanade (right) produces smoother motion
vectors than standard Lucas-Kanade (left). The vectors are colored
by the fragment in which they are contained.

2.6. Updating fragment models

This paper proposesadaptivefragments, i.e., fragments
that are determined by the image data rather than being
hardcoded. Once the target has been tracked to the cur-
rent image frameIt, the GMMs representing the target and
background must be updated. We accomplish this objective
in the following manner. First, for each pixel, we find the
fragment that contributed most to its likelihood:

ζ(x) = arg max
j=1,...,k?

p?(ξIt
(x)|Γt−1, j). (16)

Then the statistics of each fragment are computed using its
associated pixels:

µ?
j,t =

1

|Z?
j |

∑

x∈Z?
j

ξIt
(x) (17)

Σ?
j,t =

1

|Z?
j |

∑

x∈Z?
j

ξIt
(x)ξI(x)T , (18)

whereZ?
j = {x : ζ(x) = j, sgn(φ(x)) = b(?)}, b(+) = 1,

b(−) = −1, andµ?
j,t is µ?

j at timet. The appearances are
then updated using a weighted average of the initial values
and a function of the recent values:

µ?
j,t = α?

j µ̄
?
j,0:t + (1 − α?

j )µ
?
j,0 (19)

Σ?
j,t = α?

j Σ̄
?
j,0:t + (1 − α?

j )Σ
?
j,0, (20)

whereµ̄?
j,0:t is a function of the past and present statistics,

e.g.,

µ̄?
j,0:t =

∑t

τ=0 e−λ(t−τ)µ?
j,τ

∑t

τ=0 e−λ(t−τ)
(21)

Σ̄?
j,0:t =

∑t

τ=0 e−λ(t−τ)Σ?
j,τ

∑t

τ=0 e−λ(t−τ)
, (22)

whereλ is a constant (λ = 0.1). The weights are computed
by comparing the Mahalanobis distance to the two models:
α?

j = β?
j,0/(β?

j,0 + β̄?
j,0:t), where

β?
j,0 =

∑

x∈Z?
j

(ξIt
(x) − µ?

j,0)
T (Σ?

j,0)
−1(ξIt

(x) − µ?
j,0)

β̄?
j,0:t =

∑

x∈Z?
j

(ξIt
(x) − µ̄?

j,0:t)
T (Σ̄?

j,0:t)
−1(ξIt

(x) − µ̄?
j,0:t).

A fragment is declared as occluded if the cardinality ofZ?
j

is less than a constant (0.2% of the image size in our im-
plementation). The updated mechanism is overrided for oc-
cluded fragments, whose spatial model is adapted to that
of the target as a whole and whose appearance model re-
mains unchanged throughout the occlusion. Finding such
occluded fragments can serve as a good cue for handling
partial occlusion, however we do not handle cases of partial
occlusion. The number of fragments is fixed throughout a
sequence and only its statistics are modified using the up-
date strategy.

3. Experimental Results

The algorithm was implemented in Visual C++ and runs
at 6-10 frames per second, depending upon the size of the
object and motion. The algorithm was tested on a number of
challenging sequences captured by a moving camera view-
ing complex scenery. Most of the sequences presented here
were chosen so that the tracker could be evaluated for ob-
jects undergoing significant scale changes, extreme shape
deformation, and unpredictable motion. The first row of
Figure 5 shows the results of the algorithm on a sequence of
a Tickle Me Elmo doll.1 The benefit of using a multi-modal
framework is clearly shown, with accurate contours (green
outlines) being computed despite the complexity in both the
target and background as Elmo stands tall, falls down, and
sits up.

The second row shows the output on a sequence in
which a monkey undergoes rapid motion and drastic shape
changes. For example, as the monkey swings around the
tree, its shape changes substantially in just a few image
frames, yet the algorithm is able to remain locked onto the
target as well as compute an accurate outline of the animal.
Additional results involving occlusion are displayed in the
third and fourth rows of Figure 5. In our approach, the shape
of the object contour is learned over time by retaining the
output of the tracker in each image frame. To detect oc-
clusion, the rate of decrease in the object size is determined
over the previous few frames. Once the object is determined
to be occluded, a search is performed in the learned database
to find the contour that most closely matches the one just
prior to the occlusion using a Hausdorff distance. Then as
long as the target is not visible, the subsequent sequence
of contours occurring after the match is used to hallucinate
the contour. Once the target reappears, tracking resumes.
This approach prevents tracker failure during complete oc-
clusion and predicts contours when the motion is periodic.
The third row in the figure shows a sequence in which a per-
son is completely occluded by a tree. Our approach predicts

1http://www.ces.clemson.edu/˜stb/research/adafrag



both the shape and the location of the object and displays the
contour accordingly. The fourth row shows a more complex
scenario where a girl, moving quickly in a circular path (a
complete revolution occurs in just 35 frames), is occluded
frequently by a boy. Our approach is able to handle this
difficult scenario as well.

The final row of Figure 5 shows the results of track-
ing multiple fish in a tank. The fish are multicolored and
swim in front of a complex, textured, multicolored back-
ground. Note that the fish are tracked successfully despite
their changing shape. Moreover, note that the small blue
fish near the bottom of the tank is camouflaged and yet is
recovered correctly due to the effective representation ofthe
object and the background using multiple GMMs.

To provide quantitative evaluation of our approach, we
generated ground truth for the experiments by manually la-
beling the object pixels in some of the intermediate frames
(every 5 frames for the monkey and tree sequences, every 10
frames for Elmo, and every 4-6 frames for the girl sequence,
avoiding occluded frames in the latter). We computed the
error of each algorithm on an image of the sequence as the
number of pixels in the image misclassified as foreground
or background, normalized by the image size.

We compared our algorithm with two approaches. In
one, the strength image was computed using the linear RGB
histogram representation of Collinset al. [6]. In the other,
the strength image was computed using a standard color his-
togram, similar to [21, 22, 13, 19]. In both cases the con-
tours were extracted using the level set framework, but the
fragment motion was not used. To evaluate the importance
of using fragment motion, we also ran our algorithm with-
out this component. Note that both versions of our algo-
rithm were automatic, whereas the linear RGB histogram
and the RGB histogram were manually restarted after every
occlusion to simulate what they would be capable of achiev-
ing even with a perfect module for handling full occlusion.

Figure 6 plots the average normalized error for the four
sequences. Our algorithm, with or without motion, per-
forms better than the two alternatives on the Elmo, tree,
and girl sequences. While the motion does not help sig-
nificantly in the first two sequences since the motion of the
target is not large from frame to frame, there is a noticeable
improvement in the latter sequence. The difference is even
more pronounced in the monkey sequence, where the rapid
motion of the monkey causes all of the techniques except
for the proposed algorithm to fail. We have also compared
our technique against a color-based version of FragTrack
[1] which also loses the monkey due to its quick movement.
We omit these results here due to space constraints, and be-
cause FragTrack does not compute a pixelwise classifica-
tion.

4. Conclusion

We have presented a tracking algorithm based upon mod-
eling the foreground and background regions with a mix-
ture of Gaussians. A simple and efficient region growing
procedure to initialize the models is proposed, and compar-
ison with state-of-the-art segmentation algorithms show im-
proved results with regard to over- and under-segmentation.
The GMMs are used to compute a strength image indi-
cating the probability of any given pixel belonging to the
foreground. This strength image computation is embedded
into a level set tracking framework in which the target lo-
cation is estimated by updating a level set function. Joint
feature tracking and model updating are both incorporated
to improve performance. Extensive experimental results
show that the resulting algorithm is able to compute accu-
rate boundaries of multi-colored objects undergoing drastic
shape changes, unpredictable motions, and complete occlu-
sion on complex backgrounds. Future work will involve uti-
lizing the extracted shapes to learn more robust priors (e.g.,
[8]), and automating the initialization.
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