
FAST BAYESIAN ACOUSTIC LOCALIZATION

Stanley T. Birchfield and Daniel Kahn Gillmor

Quindi Corporation, 480 S. California Ave., Palo Alto, California 94306
fbirchfield, dkgg@quindi.com

ABSTRACT

We derive a probabilistic formulation, based upon Bayes’
rule, for the acoustic localization problem. The resulting
formula is shown to be closely related to the energy of a con-
ventionally beamformed signal. We then present a close ap-
proximation to both which is much faster to compute — by
two orders of magnitude with our experimental setup. The
fast algorithm is essentially a generalization of approaches
based upon time delay estimates (TDE’s), by applying the
principle of least commitment. Experiments on real signals
demonstrate accurate localization in noisy, reverberant en-
vironments (less than 3 dB SNR) several times faster than
real time.
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1. INTRODUCTION

Two common ways of determining the location of an acous-
tic source using an array of microphones are beamforming
[1, 2] and time-delay estimation [3]. In beamforming, the
signals from the microphones are time-shifted and summed,
and the energy of the reconstructed signal indicates the like-
lihood of the source being the location corresponding to the
time delays used. Although beamforming can give good re-
sults, the computation is generally too expensive to allow
the likelihoods to be computed at all possible locations. As
a result, sophisticated search strategies are employed which
are inevitably unable to ensure that the global maximum has
been found.

Traditionally, time-delay estimation has been a two-step
process. First, the signals from pairs of microphones are
correlated, and the peak of each correlation vector is taken
as an estimate of the time delay between the microphones
in the pair. Then these estimates are combined, using any of
several techniques, to determine the location of the acous-
tic source. Although such methods are fast, they generally
perform poorly in highly reverberant environments.

In [4], the principle of least commitment was applied
to acoustic localization, resulting in a fast, robust algorithm
for a compact microphone array. Like time-delay estima-
tion, the method involves correlating pairs of microphone
signals, but instead of taking the peak of each correlation

vector, all the correlation values from all the vectors are ac-
cumulated in a common coordinate system.

This paper extends that work by deriving, using Bayes’
rule, a probabilistic way of combining the information from
all the microphones. Surprisingly, the resulting formula is
shown to be very similar to that of conventional beamform-
ing. We then offer a computationally efficient alternative,
which in many scenarios can be expected to yield results in-
distinguishable from either the probabilistic or beamform-
ing approaches. Because it does not make the plane-wave
assumption inherent in [4], the algorithm presented here is
much simpler and is also applicable to non-compact micro-
phone arrays.

2. BAYESIAN DERIVATION

Suppose we have N microphones and a source signal s(t)
propagating through a generic free space with noise. The
signal acquired by the ith microphone, i = 1; : : : ; N can be
modeled as

xi(t) = gi(t) � s(t� �i) + �i(t);

where �i is the propagation time �i(t) is additive noise, and
gi is the acoustic impulse response of the channel between
the source and the ith microphone [5].

Let each value of xi(t) be treated as an estimator for
�i and for s(t � �i). Using Bayes’ rule, the a posterior
probability that the source location is q is

P = P (q; sjx1; : : : ; xN ) =
P (x1; : : : ; xN jq; s)P (q; s)

P (x1; : : : ; xN )
:

Ignoring the denominator, which is just a normalization con-
stant, and assuming that the prior P (q; s) is uniform, this
reduces to the maximum likelihood: P (x1; : : : ; xN jq; s):

Let us assume that the sound source is audible and in
a fixed location during the time interval [t0 �W; t0 +W ],
where 2W is a window size. For simplicity, let us also as-
sume that �i(t) is independent zero-mean white Gaussian
noise with variance �2i , and let us ignore reverberation by
setting gi(t) is the Dirac delta function. In that case, every



value of the microphone signals are considered as indepen-
dent measurements, leading to

P 0 = P (x1; : : : ; xN jq; s) =
NY
i=1

P (xijq; s)

=

NY
i=1

e
�

R
t0+W

t0�W

[xi(t+�i)�s(t)]
2

2�2
i

dt

;

where �i =k q � mi k =c, if mi is the location of micro-
phone i and c is the speed of sound in the medium.

Since we don’t have access to the original source s, we
use the maximum likelihood estimator (MLE):

ŝ(t) =
1

N

NX
i=1

xi(t+ �i):

Substituing ŝ for s, assuming all the �i’s are equal, and tak-
ing the logarithm, we get

logP 0 = �

NX
i=1

Z t0+W

t0�W

[xi(t+ �i)� ŝ(t)]2 dt;

which reduces, after some algebraic manipulation, to

Lbayes(q) = logP 0 =
2

N
VC �

N � 1

N
VE ; (1)

where

VC =
NX
i=1

NX
j=i+1

Z t0+W

t0�W

xi(t+ �i)xj(t+ �j) dt

is the sum of samples taken at various offsets from the cross-
correlations of each pair of microphone signals, and

VE =
NX
i=1

Z t0+W

t0�W

x2i (t+ �i) dt

is the combined energy in all the signals.

2.1. Comparison with beamforming

Conventional beamforming [6] computes the energy of the
reconstructed signal:

Lbeam(q) =

Z t0+W

t0�W

"
NX
i=1

xi(t+ �i)

#2
dt

=

NX
i=1

NX
j=1

Z t0+W

t0�W

xi(t+ �i)xj(t+ �j) dt

= 2VC + VE (2)

Notice the similarity between Eqs. (1) and (2). Both
methods seek to maximize the cross-correlation between
microphone signals, but the way they treat energy is dif-
ferent. In one case the total energy is minimized, while in
the other it is maximized.
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With VC , both windows move. All combinations of � i and
�j must be computed.
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With V 0

C , one window remains fixed. Only the values
along a line bounded by j�j � �ij � kij , where kij =

b
rdij
c
c, are computed.

Fig. 1. Why V 0

C is more efficient than VC .

3. A FASTER METHOD

Computing VC for every possible location q is expensive.
As a result, researchers have proposed various techniques
for efficiently searching the space. Invariably, however, these
methods are prone to finding local maxima rather than the
global maximum. In this section, we show how to efficiently
compute a close approximation to VC .

First notice that, by a change of variables, VC can be
expressed as

VC =

NX
i=1

NX
j=i+1

Z t0+�i+W

t0+�i�W

xi(t)xj(t� �i + �j) dt:

A tremendous gain in efficiency can be realized by instead
computing

V 0

C =

NX
i=1

NX
j=i+1

Z t00+W

t00�W

xi(t)xj(t� �i + �j) dt;

where t00 is a constant.
Figure 1 illustrates the difference between these two for-

mulas. With VC , the window over which the integral is com-
puted varies for both microphone signals under considera-
tion. As a result, the integral must be computed for every
possible combination of �i and �j corresponding to the hy-
pothesized locations under consideration. The question that
VC is helping to answer is, “Where was the source that gen-
erated sound at time t0?”

In contrast, V 0

C ignores the source generation time t0 and
instead asks, “Where was the source that generated sound
that was heard by microphone i at time t 00?” One of the
microphone signal windows is held constant while the other
varies relative to it. As a result, the integral is computed
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Fig. 2. Even with a large microphone array, V 0

C is a good
approximation to VC because the value of the integral is
largely independent of t00.

for a one-dimensional set of values �j � �i, which is simply
the cross-correlation between the two signals. Moreover,
because j�j � �ij � dij=c, where dij =k mi � mj k is the
distance between the microphones, the range of values is
determined solely by the microphone array geometry (and
the sampling rate, in discrete processing), independent of
the number of hypothesized locations.

How good of an approximation is V 0

C to VC? Figure
2 displays the value of the integral of a typical speech sig-
nal as a function of t00 over 14 ms, which corresponds to
the maximum time-shift max jt00 � t0 � �ij for a 5m � 5m
room with microphones around the perimeter. Notice that
the value of the integral changes by just 25%, but more im-
portantly, the ordering of the hypotheses is preserved. That
is, the peak is always the correct �j � �i independent of the
value of t00. Therefore, when the speech utterance is long
relative to the maximum time-shift, we can expect the rela-
tive values computed with V 0

C to be very similar to the rela-
tive values computed with VC , even with large microphone
arrays.

Notice that V 0

C involves essentially the same computa-
tion as the first step of TDE-based locators. Instead of tak-
ing the peak, however, all the correlation vectors are com-
bined to improve robustness to noise, similar to that done
in [1, 7]. Because we are able to compute the a reasonably
dense sampling of the entire probability density function in
well under real time, there is no advantage in using the par-
ticle filtering techniques of [7].

Let us now compare the computational complexity of
the two alternatives. (We ignore the computational cost of
time-shifting the input signals, which often requires inter-
polation.) In both formulations, the integral is evaluated
2WQ

�
N
2

�
times, where Q is the number of hypothesized lo-

cations q being evaluated. Evaluating the integral requires
2Wr multiplies, where r is the sampling rate. Thus, the
total number of multiplies to compute VC is 2WrQ

�
N
2

�
.

For V 0

C , evaluating the integral is simply a lookup, but the
precomputation requires 2WrK

�
N
2

�
multiples, where K �

2b rdmax

c
c + 1 and dmax is the maximum distance between

any two microphones. Thus V 0

C requires at most Q
�
N
2

�
+

2WrK
�
N
2

�
multiplies. The ratio of the number of multi-

plies for V 0

C to VC is given by 1

2Wr
+ K

Q
. For typical scenar-

ios, the second term dominates. We have a compact array
of four microphones spaced 15 cm apart. We have chosen
a sample domain with 2500 sample locations, which eas-
ily gives us as much resolution as the sampling rate of our
input signals. With these numbers, V 0

C requires just over
1% of the multiplies as VC . Thus, V 0

C , in this scenario, is
faster by two orders of magnitude. Of course, with a large
microphone array and a small number of locations, the com-
putational advantage will decrease, as long as every pair of
microphones is cross-correlated.

Because we have been able to achieve excellent results
without VE , our algorithm relies solely upon V 0

C . A sum-
mary of the three methods is shown in the following table.

Lbayes(q) =
2

N
VC �

N � 1

N
VE

Lbeam(q) = 2VC + VE

Lcorr(q) = V 0

C

4. HANDLING MULTIPLE SOUND SOURCES

By computing likelihoods for all possible locations q, the
methods presented in the previous sections are capable of
finding mulitple simultaneous sound sources. To see this,
let �ki represent the travel time between source sk to micro-
phone i, and let Ck represent the correlation sample inside
the integral due to a single source sk:

Ck = xi(t)xj(t� �i + �j)

= sk(t� �ki)sk(t� �i + �j � �kj):

It is straightforward to show that the correlation sample,
C12, due to two simultaneous sound sources s1 and s2, is

C12 = xi(t)xj(t� �i + �j)

= [s1(t� �1i) + s2(t� �2i)] �

[s1(t� �i + �j � �1j) + s2(t� �i + �j � �2j)]

= C1 + C2 + �0;

where

�0 = s1(t� �1i)s2(t� �i + �j � �2j)

+ s2(t� �2i)s1(t� �i + �j � �1j):

If s1 and s2 are uncorrelated, then the expected value of
the cross terms in � 0 are zero, which means that E[� 0] =
0. Thus, �0 can be treated as an additive zero-mean noise
source. The value computed at any location is approxi-
mately the sum of the values that would have been com-
puted with either source alone. Thus, we can detect mul-
tiple simultaneous speakers by looking for multiple local
maxima in the set of possible locations.
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Fig. 3. Results with one speaker. The line indicates ground
truth.

5. EXPERIMENTAL RESULTS

For our experiments, an array of four microphones, arranged
in a square with a diagonal of 15 cm, was placed on a table
in a conference room. A recording of a male voice count-
ing from one to ten was played through a speaker on the
table. The hypothesized locations consisted of a sampling
over the surface of a hemisphere (1m radius) centered on
the center of the array. This surface was sampled at 100
longitudes and 25 latitudes. Lcorr was measured at each lo-
cation q for each 55 ms window of audio sampled at 44:1
kHz. PHAT prefiltering was applied, as well as bandpass
filtering between 3 and 4 kHz. The entire algorithm takes
less than 7 ms to process a 55 ms frame of audio, on a 450
MHz Pentium III.

Figure 3 shows the results of a single speaker at a dis-
tance of 2 m, with SNR ranging from 0:2 to 2:8 dB. An x
is placed at every local maxima above a threshold. The line
indicates ground truth. During the time of the recording, the
median error in pan angle (�) was 1:97 degrees.

Shown in Figure 4 are the results of playing the record-
ing through two speakers 1:1 m from the array, starting the
second one when the first was approximately halfway fin-
ished. The SNR ranged from 4:8 to 6:3 dB. The algorithm
is able to simultaneously detect multiple speakers.

6. CONCLUSION

We have used Bayes’ rule to derive an optimal algorithm
for performing acoustic localization from an array of mi-
crophones and showed that it is very similar to conventional
beamforming. We then presented a new algorithm which
closely approximates the Bayesian formulation yet is or-
ders of magnitude faster than conventional beamforming lo-
calization techniques for compact microphone arrays. The
new algorithm also more closely approximates the Bayesian
formulation because of its decreased reliance on the energy
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Fig. 4. Results with two simultaneous speakers, one starting
later than the other. The lines indicate ground truth. The
circles indicate audio frames containing multiple peaks.

term. The algorithm was shown to produce excellent results
for a single speaker and for multiple speakers.
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