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Abstract— We present a novel method for image-based floor stereo homographies. The approach of [20] computes only a
detection from a single image. In contrast with previous sparse representation of the floor by classifying spardarea
approaches that rely upon homographies, our approach does 4ints while the other two approaches make a pixelwise

not require multiple images (either stereo or optical flow). decision to result in a dense floor representation
It also does not require the camera to be calibrated, even ISI suit S pres '

for lens distortion. The technique combines three visual cues [N the computer vision community, some impressive re-
for evaluating the likelihood of horizontal intensity edge line sults have been achieved recently for related problems. Lee
segments belonging to the wall-floor boundary. The combingtion et al. [1], for example, have developed a method that is
of these cues yields a robust system that works even in the cahapie of performing geometric reasoning on a single indoo
presence of severe specular reflections, which are common in . . . S -
indoor environments. The nearly real-time algorithm is tested 'Mage. Inspired by the early line-drawing interpretatioorky
on a large database of images collected in a wide variety of Of Guzman [18], they are able to separate the walls from
conditions, on which it achieves nearly 90% detection accuracy. the floor and ceiling using intensity edges and geometric
constraints. In another impressive piece of work, Hoiem et
. INTRODUCTION al. [6] also assign labels to pixels based upon image data
Image-based floor detection is an important problem faand class priors, primarily for outdoor scenes. Although th
mobile robot navigation. By knowing where the floor is,results of both of these approaches are promising, neither
the robot can avoid obstacles by navigating within the freeperates in real time, thus limiting their application to
space. Detecting the floor, the robot is also able to acquirebotics at the moment. Moreover, the work of [1] requires
information that would be useful in constructing a map of theéhe ceiling to be visible, which is often not the case when
environment, insofar as the floor detection specificallyrdel the camera is mounted on a mobile robot that is low to the
eates between the floor and the walls. Moreover, locali@atiqground.
using an existing map can be guided by floor detection by In this paper we introduce a novel method for floor
matching the location of the detected floor with the locatiomletection from a single image for mobile robot applications
of the floor expected from the map. Additional reasons foUnlike existing techniques, the approach does not make
floor detection include problems such as computing the sizese of the ground plane constraint and therefore does not
of the room. use homographies, optical flow, or stereo information. As a
A significant amount of research has focused upon thesult, it does not require the camera to be calibrated, not
obstacle avoidance problem. In these techniques, the grimaven for lens distortion. Inspired by the work of McHenry et
purpose is to detect the free space immediately around the [12], our technique combines multiple cues to enable the
mobile robot rather than the specific wall-floor boundarywall-floor separating boundary to be estimated in the image.
Most of these approaches utilize the ground plane constrai@ne especially noteworthy aspect of our approach is its
assumption to measure whether the disparity or motion @iroper handling of specular reflections. It is not uncommon
pixels matches the values that would be expected if the poirfior indoor scenes to contain significant amounts of reflectio
lie on the ground plane. Sabe et al. [13] use stereo camemafslight off the floor, particularly when the overhead lights
to accomplish this task, while the methods of Stoffler [14hre bright, the sun is shining through a window, and/or
and Santos-Victor [17] rely upon optical flow. An alternatethe floor is particularly shiny. These reflections can coafus
approach was pursued by Lorigo et al. [4], who used homography-based approaches, because they cause pixels on
combination of color and gradient histograms to distinguisthe ground plane to violate the ground plane constraint. Re-
free space from obstacles. flections are also known for being difficult to model, causing
Only a handful of researchers have considered the flogpurious intensity edges and altering the color appearaice
detection problem in its own right. Similar to the obstaclaghe floor. By combining multiple visual cues, our approach
avoidance approaches, the techniques employed tend to ugi-often able to ignore the spurious edges, distinguishaxg b
lize the ground plane constraint. Kim and colleagues [2lween edges arising from the structure of the scene and those
[3] and Zhou and Li [20] apply planar homographies tgroduced by the specular reflections. Another contribution
optical flow vectors, while Fazl-Ersi and Tsotsos [19] rety o of this work is the introduction of a rather large database
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Fig. 1. Flowchart of the proposed method for floor detection.

of more than 400 indoor corridor images from dozens ofve discard segments whose length is less than a threshold
different buildings, exhibiting a wide range of conditio®n (60 pixels for vertical lines, and 15 pixels for horizontal
this challenging dataset, our algorithm is able to succdlgsf lines). Then we compute the intersections of the horizontal
detect the floor on around 90% of the images. line segment pairs, after which we compute the mean of the

Figure 1 shows an overview of our approach. Horizonta} coordinate of the intersections inside the image to yield
and vertical line segments are detected, and three cuas estimate of the vanishing line. For any pair of horizontal
are used to evaluate the likelihood of each horizontal linkne segments, the intersection point is calculated by thesc
segment being on the wall-floor boundary. The weighted suproduct between the two line extensions, using homogeneous
of these values is thresholded, and the remaining segmentsrdinates:
are connected to form the estimated wall-floor boundary.

wv a; a;
Note that our approach operates on a single image, without L b% b]4 1
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Il. DETECTING LINE SEGMENTS where each horizontal line is described fay + by + ¢ =
A. Detecting and classifying line segments 0, and the intersection poirtv,, fuy]T is determined by

The first step of the approach is to detect intensity edges Ij¥ding by the scaling factow. Once the intersection point
applying the Canny edge detector [8] to the grayscale imag'%"?‘s bee'n dgtec_ted, all horlzontal line segments that Ileea_bo
Then a robust line fitting method is applied to the intensity1€ Vanishing line are discarded. The result of detection,

edges to obtain a set of line segments. We use the Doug|§é@ssification, and pruning of line segments is illustraited

Peucker algorithm [9], with the modification described inf'9ure 2.

[11] to improve the retention of small line ;egments thaF IIl. SCORE MODEL FOR EVALUATING LINE SEGMENTS
occur at the bottom edge of doors. Each line segment is ] ) )
defined by two endpoints in the image. Line segments are Not al! of the horlzontal line segments that remain from
divided into two categories: vertical and horizontal. Bhea e Pruning step will be related to the wall-floor boundary.

over three hundred corridor images and the ground truth, Wi determine the likelihood that a horizontal segménis

determined a tight slope range to the vertical line segmen{a€@r this boundary, we compute a weighted sum of scores
r three individual visual cues:

so that a line segment is classified as vertical if its slope fo
within +5° of the vertical direction. Horizontal line segments ¢, . /(¢,) = w, . (1) + wydy (€n) + widy, (), (2)
are given a wider slope range: A line segment is classified - _
as horizontal if its slope is withint45° of the horizontal wherews, wy, andwy, are the weights, and, (¢5), ¢, (¢n),
direction. All other slopes are discarded. and ¢, ((») are the three individual scores, which are now
o described.

B. Pruning line segments

Due to the noisy conditions of real-world scenes, thé\: Structure Score
procedure just described often produces spurious line seg-We have found that a surprisingly effective cue for dis-
ments that are not related to the wall-floor boundary. Wénguishing the walls from the floor in typical corridor
apply two additional steps to prune such segments. Firgnvironments is to simply threshold the image. This apgroac



Fig. 2. The wall-floor boundary of typical corridor images iffidult to Fig. 3. Top-LEFT: A typical corridor image. DP-RIGHT: Pixels with
determine due to strong reflections and shadowse: TTwo images, with  gradient magnitude greater than a threshold are shown irewBiTTOM-
the result of the modified Douglas-Peucker line fitting althon applied to  LEFT: Using the separating curve from Fig. 5, the edge pixels méstiow
Canny edge detection overlaid. The line segments are ctssifto two  the boundaries of the wall, door frames, and floooTBOM-RIGHT: The
groups: vertical (blue) and horizontal (yellow).oBToM: Line segments original image thresholded by a value determined by the sépgreurve,
have been pruned according to length and the vanishing,@srdescribed thus revealing the structure of the corridor.

in the text, to reduce the influence of reflections and shadows

of a bimodal gray-level histogram to accurately capture the
works especially well in environments in which the wallssubtle complexities of indoor scenes. Table | provides a
are darker than the floor, and it also takes advantage of theantitative comparison using the images from our corridor
fact that the baseboard is often darker than the floor dumage database. The table shows the percentage of images
either to its painted color, shadows, or collected dirt.datf for which the thresholded result does not contain spurious
even when the walls, doors, and floor are nearly white, thaixels on the floor.
technique is more effective than one might at first expect.
This is partly due, perhaps, to the shadows under the doorj§
that appear no matter the color of the surfaces in the carrido ]
In some environments, the walls are lighter than the floor, ing
which case thresholding will still distinguish between tive
but with reverse binary labels compared with those sitnatio
just described.

An important step is to determine the value of the thresh- :
old to use. Our proposed approach to thresholding, Whiqrfg. 4. Results of two standard thresholding algorithms enséime image
will be described in a moment, involves examining thes the previous figure: Ridler-Calvard [15] (left), and Ofd8] (right).
structure of the scene, i.e., the intensity edges. In Figure Notice the spurious pixels on the floor due to reflection aratietvs.
for example, the top-right image containing the pixels with
large gradient magnitude reveals the edges of the doors,

: . - Ridler-Calvard [15] | Otsu [16] | Ours
lights, wall, and so forth. A human observer looking at this correctness 62% 66% 82%
type of image could infer the structure of the scene with TABLE |

little diﬁ:iCL_“ty'.aS was observed by I_‘ee et al. [1] One idea QUANTITATIVE COMPARISON OF OUR THRESHOLDING METHOD WITH

that we tried is to compute the desired threshold as the av- |\, ; sTANDARD ALGORITHMS. SHOWN ARE THE PERCENTAGE OF

erage graylevel intensity of these intensity edges. Whike th IMAGES WITHOUT SPURIOUS PIXELS ON THE FLOOR

approach works fairly well, the distracting intensity edge

caused by the reflections on the floor skew the computed

threshold in such a way as to reduce the quality of the We now describe our approach to determining the thresh-

thresholded image. Therefore, we first discard these iitfensold value. The intensity edges that arise due to reflections

edges in a manner described in a moment, in order to reswlt the floor tend to have very high intensity values but quite

in a relatively clean thresholded image. Figure 3 illussat low gradient magnitude values, the latter being because of

the process. the inherent blur that occurs because floors are not perfectl
For comparison, Figure 4 shows the output of two standaréflective surfaces. To test this hypothesis, we used our

algorithms based on the gray-level histogram, Ridler-&alv database of over 400 images. We manually selected over 800

[15] and Otsu [16], on the same image. Compared with oyoints on these images that lie on true edges on the walls in

approach, the standard techniques mistakenly label rneflectthe world (i.e., they lie on door frames, etc.), and we also

pixels on the floor, due to the failure of the simplified modetandomly selected the same number of points that are not



on true edges (i.e., they are on the ceiling or the floor). Ais normalized using a Gaussian distribution with a standard
SVM-based classifier [7] was used to find the best separatimigviationo,:
hyperplane to distinguish between the two classes of data
using the intensity value and the gradient magnitude of each bs(f) = exp {_ ¢s(Ln) } 7 (6)
point. Figure 5 shows the training values along with the 202
separating curve. (The hyperplane in the higher dimenkiona
space defined by the polynomial kernel function becomes'41€re7s
curve when projected back into the original feature space.)

B. Bottom Score

= 10.

60

The vertical line segments provide an important cue to

* d int . . . . .
Pt e\ o nonedas point provide independent evaluation of whether a given horidont
* . . . - .
50F 4 i Fron SVM separating curve _ | line segment is likely to be on the wall-floor boundary. First

we discard all vertical line segments whose bottom point
does not extend below the middle of the image. This step
helps to ignore vertical line segments that arise due taitext
on the wall or ceiling, since the camera on the robot is low
to the ground and facing straight ahead. Then, we sort the
remaining vertical segments according to theicoordinate
and connect their bottom endpoints to yield a polyline that
extends from the left side of the image to the right side. Even
though this polyline is a rough approximation of the wall-

‘ floor boundary, it is fast to compute and generally reliable
Intensity 20 enough to help guide the evaluation. The bottom score of a
horizontal line segment;, is computed as the distance of all

Fig. 5. Linear-based classification of pixels on horizotita¢ segments. of its pixels to the polylindb:

The x coordinate is the intensity of the pixel, while thecoordinate is

its gradient magnitude. From the training data, some pix@sdge points

(red stars), while others are nonedge points (blue circl@spolynomial ¢b(€h) = Z d[(x,y),&], (7)
kernel based classifier separates the two groups of pointanbgptimal (z,y)ELn

curve (black).
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whered](x,y), {,] computes the distance between the point

From the figure, it is clear that taking both the gradienfx’y) and the polyline. To normalize the score, we use the
magnitude and intensity value into account yields bettek,  ssian distribution with a standard deviation
separation than using either alone. We define thef'séd

denote the pixels in the image whose intensity value and - &b (Lr)
gradient magnitude cause them to lie above the SVM-based $v(En) = exp {_ 207 } ’ (8)
separating curve.
The average intensity of the pixels in this set determineshereo; = 30.
the threshold that is used for extracting the main strudture  Figure 6 illustrates this computation for two typical cor-

a corridor image: ridor images. The horizontal line segments that benefit most
1 from this computation are highlighted with red ellipses.

e = T > I(x,y). (3)  We can see that this computation is especially helpful for

(z,y)ee’ reducing the likelihood of considering line segments on the

The structure image is therefore defined as the binary imagéll to be part of the wall-floor boundary.
resulting from thresholding the image using this value:

S(x,y) = (I(x7y) > TLC’) . (4)

Since the true edges are generally aligned with the streictur
of the corridor, we compute the structure scereof a line
segment?;, by measuring the distance of each pixel in the
line segment to the nearest non-zero pixel in the structure.—
image:

os(tn) = > dl(x,y),S], ®) T

(z,y)Ely Fig. 6. Horizontal and vertical line segments detected in tmages.

The red ellipses highlight the horizontal segments with tighdst bottom

whered](z,y),S] computes the distance between the poindcore, due to their proximity to the bottom endpoints of ngastrtical line

(x,y) and the structure imag8. For fast computation, we Segments.
use the chamfer algorithm to compute the distance. The score



C. Homogeneous Score twenty different buildings exhibiting a wide variety of dif

In many cases, the floor of a typical corridor environmenerent visual characteristics. The images were captured by
is fairly homogeneous in its color throughout. In contrast-0gitech QuickCam Pro 4000 webcam mounted about 30 cm
there tend to be moderate to high amounts of texture giPove the floor on an ActivMedia Pioneer P3AT mobile
the wall regions due to decorations, posters, door knopbot. The images were processed by an algorithm imple-
kick plates, nameplates, windows, and so forth. Similarlyneénted in the C++ programming language on a 2.4 GHz
the lights in the ceiling cause texture in that region as welc0re 2 processor (Dell XPS M1330 laptop). Although the
To take advantage of this information, we perform colorOmputation time varies somewhat according to the number
based segmentation of the image to favor horizontal lin@f detected line segments, the algorithm runs at approxi-
segments which are located just above large homogenedligtely 5 fram_es/se’c. _
regions, since the floor is generally the largest homogesieou For all environments, the equation of the SVM-based

region in the image. separating curve is

We employ the graph-based segmentatioq e_llgorithm of 35 96 475 .
Eelzenszvya]b and Hyttenlocher [5] because it is cqmputa—[ r oy 1 ] 2% 50 —1925 v | =0, (10)
tionally efficient, requires few parameters (e.g., the mimin 475 —125 10 1

size of a region), and produces reasonable results. Thitgsresu

of this algorithm on a couple of typical corridor imagesthe weights for the individual scores ate = 1.6, w, =

are shown in Figure 7. Notice that the floor is the largedt-75 andwy, = 1.0, respectively, and the total threshold is
homogeneous region in both images, which is often the = 2.7.

case in our image database. Occasionally, disturbance fromTo evaluate the algorithm, the images in the database were
reflection or texture on the floor prevent this cue from beinghanually labeled by clicking on a number of points and then
successful, which helps to motivate the need for multiplétting a B-spline curve to yield a ground truth wall-floor

cues. boundary. We define the error of the algorithm applied to an

image as the number of pixels misclassified as floor or non-
L floor, normalized by the total number of ground truth floor
pixels. Equivalently, the error can be computed as the sum,
over all the columng =0, ..., width — 1 in the image, of
L the difference between the ground trujmoordinateyg%
and the estimateg coordinatej(®):
. . . . Terr = ) (11)
Fig. 7_. T_he result o_f graph-basgd segmentation [5] on twadmrimages Zm height — yg%
used in Figure 6, with each region assigned a random colde Nt the

floor is almost a homogeneous area in both images, while the n@ltiaors

are divided into several smaller regions. where the image is of sizevidth x height, and the sub-

traction in the denominator arises from the convention that
Elgey coordinate is with respect to the top of the image. We

The homogeneous score of a horizontal line segment . ;
9 9 set a threshold of 10%, so that the detection for an image

computed as

B IR is considered a failure for a particular imagerif.. > 0.1
n(ln) = Ronae] (9)  for that image. Using this convention, our approach colyect
e detects the floor region in 89.1% of the image database.
where |R| denotes the number of pixels in the regi®  Figure 8 presents the results of our algorithm on some

just below the line segment, arllmax is the maximum  typical corridor images. The first row displays wall-floor
region size among all the segments found by the graph-basgglundaries that extend upward from left to right in the
segmentation. image, while the second row shows the reverse situation.
In the third row, both sides of the corridor are visible, so
; i that the boundary extends in both directions. And the fourth
Each horizontal segmert, for which ®;otai(¢h) > 76,  row shows floors with extremely strong reflections on the
where 7, is a threshold, is retained. These remaining ling,, \here the floor and wall are again distinguished using
segments are then ordered from left to right in the image, angl,y |ow-level information. From these results, we can see
their endpoints are connected. At the left and right borders y4¢ our approach is capable of detecting floors in corridors
the image, the lines are extended. This results in a polyling,qer gifferent illumination conditions and perspectivies
stretching across the image defining the boundary betwegfiion, Figure 9 shows some successful results on images
the wall and the floor. downloaded from the internet, showing the versatility af th

V. EXPERIMENTAL RESULTS approach.

To test the performance of Qur a]gonthm, an 'mage_ 1See http://www.ces.clemson.edu/ stb/research/fii@ection for videos
database of more than 400 corridor images was taken dnthe results.

D. Detecting the wall-floor boundary



Fig. 8. Examples of floor successfully detected by our algoritNote the variety of floor materials, floor reflectivity, tla pose of the floor with
respect to the robot, and lighting conditions (Best viewedalor).

Fig. 9. Results of our algorithm on images downloaded fromvikb (Best viewed in color).

Some examples where the algorithm fails are shown iniques. The impressive work of Hoiem et al. [6] is aimed
Figure 10. In the first image from the left, the checkeregrimarily at outdoor environments, while the recent work
floor lead to many horizontal line segments that are mistalof Lee et al. [1] is designed to reconstruct indoor scenes
enly interpreted by our score model, and the graph-basedhen the ceiling is visible. Neither system is real time.
segmentation detects many small pieces on the floor regidievertheless, Figure 11 shows some successful results of ou
rather than a single homogeneous segment. For the secatgorithm working on three of the failure examples given in
image, the wall texture also results in many horizontal linéhe latter paper. Perhaps the closest work to our own in terms
segments that distract the algorithm. For the third imdge, t of purpose and scope is that of Kim and colleagues [2], [3],
shadows and reflection dominate the line segment detectiamich requires two image frames to segment the floor from
due to the poor gain control of the camera, making the findhe rest of the scene. Because their approach does notrcontai
result less precise. And for the fourth image, the far glass specific mechanism to handle strong reflections, it is
door with no absolute edges makes it difficult for even @aoubtful that it would work successfully on the many images
human observer to precisely locate the wall-floor boundarin our database that contain such extreme lighting conwitio
though the results of the algorithm are even worse due to tigmilarly, the obstacle avoidance system of Lorigo et . [4
lack of horizontal segments in that region of the image. is not designed to handle strong reflections.

It is difficult to compare these results with existing tech-



Fig. 10.

Examples for which our algorithm fails to properlytetg the floor. From left to right, the failures are caused trgrgy texture on the floor,

texture on the wall, an overly dark image from poor image expmsand excessive bright lights at the end of the corridos{B&wed in color).

Fig. 11.

V. CONCLUSION AND FUTURE WORK [8]

We have presented an image-based floor detection algo-
rithm using an uncalibrated camera. The floor is detected
by a camera mounted on a mobile robot, which maintains a
low perspective of the scene. The novel approach combings)
the results of applying three different visual cues to thst t
validity of horizontal line segments detected in the image,
Our approach achieves nearly 90% detection of the wall-
floor boundary on a rather large database of over 400 images

. ; . - e [12]
captured in a variety of environments exhibiting difficult
conditions such as extreme reflection. The algorithm is
suitable for real-time mobile robot applications using &a o [13]
the-shelf camera. One limitation of the current approadts is
tendency to get confused when the floor is highly textured, or
when the image is especially dark due to poor gain contrdf4l
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