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Abstract. We present an approach for articulated motion detection and pose es-
timation that uses only motion information. To estimate the pose and viewpoint
we introduce a novel motion descriptor that computes the spatial relationships of
motion vectors representing various parts of the person using the trajectories of
a number of sparse points. A nearest neighbor search for the closest motion de-
scriptor from the labeled training data of human walking poses in multiple views
is performed. This observational probability is fed to a Hidden Markov Model
defined over multiple poses and viewpoints to obtain temporally consistent pose
estimates. Experimental results on various sequences of walking subjects with
multiple viewpoints demonstrate the effectiveness of the approach. In particular,
our purely motion-based approach is able to track people even when other visible
cues are not available, such as in low-light situations.

1 Motivation for Articulated Human Motion Analysis

The detection of articulated human motion finds applications in a large number of areas
such as pedestrian detection for surveillance, or traffic safety, gait/pose recognition for
human computer interaction, videoconferencing, computergraphics, or for medical pur-
poses. Johansson’s pioneering work on moving light displays (MLDs) [1] has enabled
researchers to study the mechanism and development of humanvisual system with a
different perspective by decoupling the motion information from all other modalities of
vision such as color and texture. One compelling conclusionthat can be drawn from
these studies is that motion alone captures a wealth of information about the scene.
Others have made a similar observation [2, 3].

Figure 1 shows some examples of humans walking as seen from multiple angles
along with their motion trajectories. Even though the appearance features (shape, color,
texture) can be discriminative for detection of humans in the sequence, the motion vec-
tors corresponding to the point features themselves can be used to detect them. The
motion of these points becomes even more compelling when viewed in a video, as the
human visual system fuses the information temporally to segment human motion from
the rest of the scene. It is common knowledge that in spite of having a separate motion,
each body part moves in a particular pattern. Our goal is to exploit the motion proper-
ties of the sparse points attached to a human body in a top-down approach for human
motion analysis. More specifically, our attempt is to answerthe question: If provided
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only with the motion tracks (sparse point trajectories) andno appearance information,
how well can an algorithm detect, track, and estimate the pose of a walking human in a
video?

Fig. 1. Two examples of human walking motion at different viewing angles, and the motion vec-
tors of the tracked feature points.

Previous work related to human motion detection and analysis can be loosely clas-
sified into three categories: pedestrian detection for surveillance, pose estimation, and
action recognition. The nature of the algorithms dealing with the different categories
varies significantly due to the differences in the input image sequences. Approaches
for pedestrian detection are either appearance-based [4–6], use both appearance and
stereo [7], or are based on modeling the periodic motion [8].In contrast to pedestrian
detection, human pose estimation [9–16, 3, 17–19] requiresgreater detail of the human
motion to be captured, with a model that accounts for the disparate motions of the in-
dividual body parts. A related area of research is human action recognition [20, 21], in
which the objective is to classify the detected human motioninto one of several prede-
fined categories using off-line training data for learning these action categories.

Even while considering only a single action category such aswalking, human mo-
tion analysis remains a challenging problem due to various factors such as pose, scale,
viewpoint, and scene illumination variations. Most approaches use appearance cues to
perform human motion analysis, but these will not work when appearance information
is lacking (e.g., at night in poorly lit areas). The few approaches that are predominantly
motion based [3, 18] are limited in terms of viewpoint and lighting variations. In this
paper, using only the sparse motion trajectories and asingle gait cycle of 3D motion
capture data points of a walking person for training, we demonstrate detection and pose
estimation of articulated motion on various sequences thatinvolve viewpoint, scale, and
illumination variations, as well as camera motion. Our focus is on a top-down approach,
where instead of learning the motion of individual joints and limbs as in [3], we learn
the short-term motion pattern of the entire body in multiplepose and viewpoint config-
urations. Pose estimation can then be performed by a direct comparison of the learned
motion patterns to those extracted from the candidate locations. The advantage of us-
ing such a top-down approach is that it greatly simplifies thelearning step, facilitating
one-shot learning. At the same time, the learned motion patterns can be reliably used to
estimate the pose and the viewpoint in the presence of noise.
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Fig. 2. Overview of the proposed approach to extract human motion models.

2 Learning Models for Multiple Poses and Viewpoints

An overview of the proposed approach is shown in Figure 2. Given an image sequence
our goal is to segment, track, and determine the configuration of the walking human
subject (2D pose and viewpoint) using only the sparse motionvectors corresponding
to the feature points in the sequence. The primary reason forusing sparse optical flow
obtained from the tracked point features instead of a dense flow field for motion repre-
sentation is efficiency of computation. The point features are detected and tracked using
the Lucas-Kanade algorithm. Since there is a significant amount of self-occlusion, many
point features representing the target are lost. Therefore, we use only short term feature

trajectories between two consecutive frames. LetVt =
(

v(t)
1 , . . . , v(t)

k

)

be the tuple that

describes the velocities of thek feature points at framet, t = 0, . . . , T , whereT + 2
is the total number of frames in the sequence. The configuration of the subject in the
current frame is denoted byct = (mt, nt), wheremt andnt are the 2D pose and view
at time t, respectively. We assume that the viewpoint stays the same throughout the
sequence. The configuration in the current frame is dependent not only on the motion
vectors in the current frame but also on the configuration in the previous time instants.
For determiningct, the Bayesian formulation of the problem is given by

p(ct|Vt, c0:t−1) ∝ p(Vt|c0:t)p(ct|c0:t−1), (1)

wherep(Vt|c0:t) is the likelihood of observing the particular set of motion vectors given
the configurations up to timet, andp(ct|c0:t−1) is the prior for time instantt that de-
pends on previous configurations. Assuming a Markov process, we can write the above
equation as

p(ct|Vt, c0:t−1) ∝ p(Vt|ct)p(ct|ct−1). (2)

The estimate of the configuration at timet is ĉt, and our goal is to estimate config-
urations over the entire sequence,C = (ĉ0, . . . , ĉT ). Learning the motion patterns of
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the multiple poses and viewpoints involves obtaining a set of motion descriptors that
describe each pose in each viewpoint first in the training data. The test data is then
processed in a similar manner to obtain motion descriptors that are compared with the
training data to obtain the likelihood of observing a particular pose and viewpoint con-
figuration.

2.1 Training Data

For training, we used a single sequence from the CMU Motion Capture (mocap) data1

in which the human subject is walking. A single gate cycle wasextracted from the
sequence. The obtained marker locations associated with the joints and limbs were pro-
jected onto simulated image planes oriented at various angles with respect to the subject
for each pose (i.e., gait phase), and the corresponding motion vectors were obtained. A
similar multi-view training approach was also adopted in [18]. The advantage of using
the 3D data is that a single sequence provides a large amount of training data. Note that
even though the motion capture data were obtained by calibrated cameras, our tech-
nique does not require any calibration since standard cameras have near unity aspect
ratio, zero skew, and minimal lens distortion.
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Fig. 3. Top: 3D Motion capture data and its projection onto various planes to providemultiple
views in 2D. Bottom: Stick figure models for a sequence of poses (gait phases) for the profile
view.

All possible views and poses are quantized to a finite number of configurations. Let
M be the number of poses andN the number of views. Letq(i)

m = (q
(i)
x , q

(i)
y , q

(i)
z )T ,

be the 3D coordinates of theith point obtained from the mocap data for themth pose,
i = 1, . . . , l. Then the projection of this point onto the plane corresponding to thenth
view angle is given byp(i)

mn = Tnq(i)
m . HereTn is the transformation matrix for thenth

view angle which is the product of the2 × 3 projection matrix and the3 × 3 rotation

matrix about the vertical axis. LetPmn =
(

p(1)
mn, . . . ,p

(l)
mn

)

be the tuple of 2D points

1 http://mocap.cs.cmu.edu
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representing the human figure in phasem and viewn andVmn =
(

v(1)
mn, . . . , v

(l)
mn

)

be

their corresponding 2D motion vectors. Note thatV denotes motion vectors obtained
from the training data whileV represents the motion vectors obtained from the test
sequences. Figure 3 shows the multiple views and poses obtained from the 3D marker
data. In this work we use 8 views and 8 poses.

2.2 Motion Descriptor

It is not possible to compare the sets of sparse motion vectors directly using a technique
like PCA [18] because there is no ordering of the features. Instead, we aggregate the
motion information in spatially local areas. Given the training data of positionsPmn

and velocitiesVmn, we define the motion descriptorψmn for posem and viewn as an
18-element vector containing the magnitude and phase of theweighted average motion
vector in nine different spatial areas, where the weight is determined by an oriented
Gaussian centered in the area. More precisely, thejth bin of the motion descriptor is
given by

ψmn(j) =
l

∑

i=1

v(i)
mnGj(p(i)

mn), (3)

whereGj is a 2D oriented Gaussian given by

Gj(x) =
1

2π|Σj |1/2
exp

(

−
1

2
(x − µj)

T
Σ−1

j (x − µj)

)

, (4)

with µj andΣj being the mean and covariance matrix of thejth Gaussian, precomputed
with reference to the body center.

Figure 4 shows the nine spatial ellipses used in computing the motion descriptor,
along with their Gaussian weight maps. The discriminative ability of the motion de-
scriptor is illustrated in the rest of the figure. The confusion matrix shows the pseudo-
colored Euclidean distance between the motion descriptorsof all pairs of 64 configura-
tions, with zero values along the diagonal. It is clear from this matrix that motion alone
carries sufficient information to discriminate between thevarious poses and views in
nearly all situations. The bottom row of the figure shows the descriptor bin values for
two cases: three different views of the same pose, and the same view of three different
poses. Because they capture the motion of the upper body, thefirst several bins have
similar values, while the last several bins representing the lower body show a larger
degree of variation. It is this larger variation in the lowerpart of the body that gives the
descriptor its discriminatory power.

3 Pose and Viewpoint Estimation

Hidden Markov Models (HMMs) are well suited for the estimation of human gait over
time. HMMs are statistical models consisting of a finite number of states which are
not directly observable (hidden) and which follow a Markov chain, i.e., the likelihood
of occurrence of a state at the next instant of time conditionally depends only on the
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Fig. 4. TOP: The proposed motion descriptor (left), weight maps (middle) of all butthe central
Gaussian used for computing the motion descriptor, and the64× 64 confusion matrix (right) for
8 poses and 8 views. BOTTOM: The motion descriptor bin values for different views of the same
pose (left), and for the same view of different poses (right).

current state. Each discrete pose for each viewpoint can be considered as a hidden state
of the model. Assuming that the pose of a human walking is a Markov process, the
observation probabilities can be computed from the image data using the motion of the
limbs, and the state transition probabilities and priors can be determined beforehand.
The goal is then to determine the hidden state sequence (poseestimates and viewpoint)
based on a series of observations obtained from the image data.

Let λ = (A,B, π) be the HMM, whereA is the state transition probability matrix,
B is the observational probability matrix, andπ is the prior. Let the configurationct
represent the hidden state of the model at timet, and letOt be the observation at that
time. There is a finite set of statesS = {(1, 1) , . . . , (M,N)} corresponding to each
pose and view angle. The state transition probability isA(i, j) = P (ct+1 = sj |ct = si),
si, sj ∈ S, i.e., the probability of being in statesj at timet + 1 given that the current
state issi. The observation probability is given byB(j, t) = P (Ot|ct = sj), i.e., the
probability of observingOt at timet given that the current state issj . Given the HMM
λ = (A,B, π), and series of observationsO = {O0, . . . , OT }, our goal is to find the
sequence of statesC = {c0, . . . , cT } such that the joint probability of the observation
sequence and the state sequence given the modelP (O, C|λ) is maximized.

The state transition probability between two statessi = (mi, ni) andsj = (mj , nj)
is predefined to be

p(sj |si) =

{

φnext if ni = nj andmj = mi + 1
φremain if ni = nj andmj = mi

0 otherwise
. (5)

whereφnext = 0.51 is the probability of transitioning to the next pose, andφremain =
0.43 is the probability of remaining in the same pose. Note that, as mentioned earlier,
the transition probability from one view to another view is zero, creating effectively a
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disconnected HMM. The observation probability is given by anormalized exponential
of the Euclidean distance between the test and training motion descriptors. The opti-
mum state sequenceC for the HMM is then computed using the Viterbi algorithm.

4 Experimental Results

Our approach was tested on a variety of sequences of walking humans from different
viewpoints, scales, and illumination conditions. The detection of articulated bodies is
performed by computing the motion descriptor to each pixel of the image at three dif-
ferent scales and projecting the descriptor onto a line to determine the similarity with
respect to a model of human motion. A strength map is generated indicating the proba-
bility of a person being at that location and scale, and the maximum of the strength map
is used as the location and scale of the target. Figure 5 showshuman detection based
on this procedure. The unique characteristics of human motion when compared to other
motions present in natural scenes is clear from the ability of such a simple procedure
to detect the people. Using only motion information, the person is correctly detected
in each sequence, even when the camera is moving, because only differences between
motion vectors are used. Once the person has been detected, Lucas-Kanade point fea-
tures are tracked through the image sequence, and the location and scale of the person
is updated using the tracked points attached to the detectedtarget. The entire process is
fully automatic.

Fig. 5. Articulated motion detection for various viewpoints: right profile, left profile, at an angle,
and frontal. In the bottom row, the camera is moving.

Figure 6 shows the pose estimation results for sequences captured from various
viewpoints. Each sequence covers an entire gait cycle. The stick figure models corre-
spond to the nearest configuration found in the training databy the HMM. It is impor-
tant to keep in mind that point feature tracks are not very accurate in sequences such
as these involving non-rigid motion and large amounts of occlusion, and a large num-
ber of point features belonging to the background cause noise in the data, especially
when the camera is moving. Moreover, when the person walks toward or away from the



8 Shrinivas J. Pundlik and Stanley T. Birchfield

camera (frontal view), the pose estimation is difficult due to the ambiguity in motion.
Nevertheless, the estimated poses are qualitatively correct.

The last row of the figures shows a sequence captured at night by an infrared camera.
The person is wearing a special body suit fitted with reflectors that reflect the light emit-
ted by the headlights of an oncoming vehicle. This suit has been used in psychological
studies of the effectiveness of reflectors for pedestrian safety by exploiting the biomo-
tion capabilities of the human visual system of automobile drivers [22]. The utility of
a purely motion based approach can be especially seen in thissequence, in which no
appearance information is available. Even without such information, the motion vectors
are highly effective within the current framework for estimating the pose. To provide
quantitative evaluation, Figure 7 shows the estimated kneeangles at every frame of the
right profile view and the frontal view sequences, along withthe ground truth.

Fig. 6. Top to bottom: Pose estimation for four frames from several sequences: right profile view,
left profile view, angular view, frontal view, and profile view at night withreflectors.

As can be seen from these results, our approach offers several advantages over previ-
ous motion-based approaches [3, 18, 17, 21]. First, it is invariant to scale and viewpoint,
and it is able to deal with noisy video sequences captured from a moving camera. In
contrast, many of the previous algorithms rely on a static camera, tightly controlled
imaging conditions, and/or a particular walking direction(e.g., profile view). Another
advantage of our approach is that it is easy to train, requiring only a small amount of
training data since there is no need to account for all the variations in appearance that
occur in real imagery. Since the estimated poses of our approach are necessarily tied
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Fig. 7. Estimated and ground truth knee angles for two sequences. The top row shows the right
knee, while the bottom row shows the left knee.

to the training data, it is not possible to recover arbitrarybody poses not seen in the
training data. Nevertheless, it may possible to train a similar detector to handle various
other actions such as running or hand waving with appropriate data.

5 Conclusion

Motion is a powerful cue that can be effectively utilized forbiological motion analysis.
We have presented a motion-based approach for detection, tracking, and pose estima-
tion of articulated human motion that is invariant of scale,viewpoint, illumination, and
camera motion. In this spirit of one-shot learning, the approach utilizes only a small
amount of training data. The spatial properties of human motion are modeled using a
novel descriptor, while temporal dependency is modeled using an HMM. A clear ad-
vantage of using a purely motion based approach is demonstrated in pose estimation
in nighttime sequences where no appearance information is available. In demonstrat-
ing the effectiveness of motion information alone, our intention is not to discount the
importance of appearance information but rather to highlight the effectiveness of this
particular cue. Future work involves exploring ways of articulated motion detection in
the presence of noise, allowing the subjects to change viewpoints as they are tracked,
combining the bottom-up and top-down approach for more accurate pose estimation,
and incorporating appearance information for increased robustness.
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