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Abstract. We present an approach for articulated motion detection and pose es-
timation that uses only motion information. To estimate the pose and viewpoint
we introduce a novel motion descriptor that computes the spatial relaiisnsh
motion vectors representing various parts of the person using the tragsabd

a number of sparse points. A nearest neighbor search for the tchoeien de-
scriptor from the labeled training data of human walking poses in multiple views
is performed. This observational probability is fed to a Hidden Markow&lo
defined over multiple poses and viewpoints to obtain temporally consisteat po
estimates. Experimental results on various sequences of walking suhjitic
multiple viewpoints demonstrate the effectiveness of the approachrtioiar,

our purely motion-based approach is able to track people even whervsitie

cues are not available, such as in low-light situations.

1 Motivation for Articulated Human Motion Analysis

The detection of articulated human motion finds applicatiora large number of areas
such as pedestrian detection for surveillance, or traffietgagait/pose recognition for
human computer interaction, videoconferencing, commrigshics, or for medical pur-
poses. Johansson’s pioneering work on moving light disp{84LDs) [1] has enabled
researchers to study the mechanism and development of huswal system with a
different perspective by decoupling the motion informaticmm all other modalities of
vision such as color and texture. One compelling conclugiah can be drawn from
these studies is that motion alone captures a wealth ofrivéftion about the scene.
Others have made a similar observation [2, 3].

Figure 1 shows some examples of humans walking as seen frdtipleangles
along with their motion trajectories. Even though the apaeee features (shape, color,
texture) can be discriminative for detection of humans engbquence, the motion vec-
tors corresponding to the point features themselves carséé 10 detect them. The
motion of these points becomes even more compelling whewedeén a video, as the
human visual system fuses the information temporally toreeg human motion from
the rest of the scene. It is common knowledge that in spit@wiiiy a separate motion,
each body part moves in a particular pattern. Our goal is pdoéxthe motion proper-
ties of the sparse points attached to a human body in a top-dpproach for human
motion analysis. More specifically, our attempt is to anstherquestion: If provided
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only with the motion tracks (sparse point trajectories) andappearance information,
how well can an algorithm detect, track, and estimate the pba walking human in a
video?

Fig. 1. Two examples of human walking motion at different viewing angles, aaditbtion vec-
tors of the tracked feature points.

Previous work related to human motion detection and arsabesi be loosely clas-
sified into three categories: pedestrian detection foresliance, pose estimation, and
action recognition. The nature of the algorithms dealinthwviie different categories
varies significantly due to the differences in the input imagquences. Approaches
for pedestrian detection are either appearance-based, [ds& both appearance and
stereo [7], or are based on modeling the periodic motionlfBtontrast to pedestrian
detection, human pose estimation [9-16, 3, 17-19] reqgieater detail of the human
motion to be captured, with a model that accounts for thead&p motions of the in-
dividual body parts. A related area of research is humawmactcognition [20, 21], in
which the objective is to classify the detected human mdtitmone of several prede-
fined categories using off-line training data for learningge action categories.

Even while considering only a single action category suctvalking, human mo-
tion analysis remains a challenging problem due to variaa®fs such as pose, scale,
viewpoint, and scene illumination variations. Most appttes use appearance cues to
perform human motion analysis, but these will not work whppesrance information
is lacking (e.qg., at night in poorly lit areas). The few aprbes that are predominantly
motion based [3, 18] are limited in terms of viewpoint anchtigg variations. In this
paper, using only the sparse motion trajectories asithgle gait cycle of 3D motion
capture data points of a walking person for training, we destrate detection and pose
estimation of articulated motion on various sequencesditkialve viewpoint, scale, and
illumination variations, as well as camera motion. Our fomuon a top-down approach,
where instead of learning the motion of individual jointgldimbs as in [3], we learn
the short-term motion pattern of the entire body in multipdse and viewpoint config-
urations. Pose estimation can then be performed by a dioegparison of the learned
motion patterns to those extracted from the candidateitwtat The advantage of us-
ing such a top-down approach is that it greatly simplifiesl&aening step, facilitating
one-shot learning. At the same time, the learned motiompeattcan be reliably used to
estimate the pose and the viewpoint in the presence of noise.
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Fig. 2. Overview of the proposed approach to extract human motion models.

2 Learning Modelsfor Multiple Poses and Viewpoints

An overview of the proposed approach is shown in Figure 2eBan image sequence
our goal is to segment, track, and determine the configuratiche walking human
subject (2D pose and viewpoint) using only the sparse maotémtors corresponding
to the feature points in the sequence. The primary reasausfag sparse optical flow
obtained from the tracked point features instead of a deos&fiéld for motion repre-
sentation is efficiency of computation. The point featuresietected and tracked using
the Lucas-Kanade algorithm. Since there is a significanternaf self-occlusion, many
point features representing the target are lost. Thergf@aise only short term feature

trajectories between two consecutive frames. et (vgt), . ,v,ﬁt)) be the tuple that

describes the velocities of thiefeature points at framg ¢ = 0,...,T, whereT + 2

is the total number of frames in the sequence. The configurati the subject in the
current frame is denoted hy = (m, n;), wherem, andn; are the 2D pose and view
at timet, respectively. We assume that the viewpoint stays the shmeghout the

sequence. The configuration in the current frame is depeémidtronly on the motion

vectors in the current frame but also on the configuratioméngdrevious time instants.
For determining:;, the Bayesian formulation of the problem is given by

p(ctﬂftvCO:t—l) O<p(v;£|60:t)p(ct|00:t—l)a 1)

wherep(V;|co.¢) is the likelihood of observing the particular set of motia@ttors given
the configurations up to timg andp(c;|co.+—1) is the prior for time instant that de-
pends on previous configurations. Assuming a Markov proeessan write the above
equation as

p(ct|Vt700:t—1) OCP(Vt|Ct)p(Ct|Ct—1)- (2)

The estimate of the configuration at times ¢;, and our goal is to estimate config-
urations over the entire sequenfe= (&, ..., ¢r). Learning the motion patterns of
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the multiple poses and viewpoints involves obtaining a $ehation descriptors that
describe each pose in each viewpoint first in the training.d@he test data is then
processed in a similar manner to obtain motion descript@sdre compared with the
training data to obtain the likelihood of observing a paréc pose and viewpoint con-
figuration.

2.1 Training Data

For training, we used a single sequence from the CMU Motiopt@a (mocap) data
in which the human subject is walking. A single gate cycle wasacted from the
sequence. The obtained marker locations associated wifbitits and limbs were pro-
jected onto simulated image planes oriented at variougangth respect to the subject
for each pose (i.e., gait phase), and the correspondingmuegictors were obtained. A
similar multi-view training approach was also adopted i8][TThe advantage of using
the 3D data is that a single sequence provides a large ambuairing data. Note that
even though the motion capture data were obtained by ctdibr@ameras, our tech-
nigue does not require any calibration since standard Gsieave near unity aspect
ratio, zero skew, and minimal lens distortion.

grr 3’:3:{3 #o
3D points projected 2D points for different views
1 2 3 4 5 6 7 8

Fig. 3. Top: 3D Motion capture data and its projection onto various planes to providéple
views in 2D. Bottom: Stick figure models for a sequence of poses (gaikqs) for the profile
view.

All possible views and poses are quantized to a finite numbasrigurations. Let
M be the number of poses amld the number of views. Leqﬁ,? = (q;i),q;”,qS))T,
be the 3D coordinates of thi¢h point obtained from the mocap data for thé" pose,
i+ = 1,...,1. Then the projection of this point onto the plane correspumntb thenth
view angle is given bp%)n = an%}. HereT,, is the transformation matrix for the'
view angle which is the product of tiex 3 projection matrix and th8 x 3 rotation
matrix about the vertical axis. L&,,,,, = (p%, RN p%%) be the tuple of 2D points

! http://mocap.cs.cmu.edu
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representing the human figure in phasend viewn andV,,,, = (vﬁ,{%, e ,vﬁfﬁn) be
their corresponding 2D motion vectors. Note thlatlenotes motion vectors obtained
from the training data whild@” represents the motion vectors obtained from the test
sequences. Figure 3 shows the multiple views and posesettiiom the 3D marker
data. In this work we use 8 views and 8 poses.

2.2 Mation Descriptor

Itis not possible to compare the sets of sparse motion \&dioectly using a technique
like PCA [18] because there is no ordering of the featurestelrd, we aggregate the
motion information in spatially local areas. Given theniag data of position$,,,,,
and velocities/,,,, we define the motion descriptar,,,, for posem and viewn as an
18-element vector containing the magnitude and phase af¢ighted average motion
vector in nine different spatial areas, where the weighteieignined by an oriented
Gaussian centered in the area. More precisely,;jthéin of the motion descriptor is
given by
l
Yrn(7) = D VionGi(P), @3)
=1

whereG is a 2D oriented Gaussian given by

1 1
Gj(x)zmexl) <—2(X—Nj)T2j1(X—Nj)>a (4)
J

with p; andX’; being the mean and covariance matrix of jteGaussian, precomputed
with reference to the body center.

Figure 4 shows the nine spatial ellipses used in computiagrbtion descriptor,
along with their Gaussian weight maps. The discriminativifitg of the motion de-
scriptor is illustrated in the rest of the figure. The confusmatrix shows the pseudo-
colored Euclidean distance between the motion descripfal pairs of 64 configura-
tions, with zero values along the diagonal. It is clear frws matrix that motion alone
carries sufficient information to discriminate between theious poses and views in
nearly all situations. The bottom row of the figure shows tasadiptor bin values for
two cases: three different views of the same pose, and the g&w of three different
poses. Because they capture the motion of the upper bodfirsheeveral bins have
similar values, while the last several bins representirgltfver body show a larger
degree of variation. It is this larger variation in the lovgart of the body that gives the
descriptor its discriminatory power.

3 Pose and Viewpoint Estimation

Hidden Markov Models (HMMs) are well suited for the estinoatiof human gait over
time. HMMs are statistical models consisting of a finite nembf states which are
not directly observable (hidden) and which follow a Markdwam, i.e., the likelihood
of occurrence of a state at the next instant of time condiligrdepends only on the
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Fig.4. Topr: The proposed motion descriptor (left), weight maps (middle) of alithatcentral
Gaussian used for computing the motion descriptor, and4he 64 confusion matrix (right) for

8 poses and 8 views.@ ToM: The motion descriptor bin values for different views of the same
pose (left), and for the same view of different poses (right).

current state. Each discrete pose for each viewpoint canigdered as a hidden state
of the model. Assuming that the pose of a human walking is akMaprocess, the
observation probabilities can be computed from the imadg uksing the motion of the
limbs, and the state transition probabilities and prions lba determined beforehand.
The goal is then to determine the hidden state sequence éptisgates and viewpoint)
based on a series of observations obtained from the image dat

Let A = (A, B, w) be the HMM, whered is the state transition probability matrix,
B is the observational probability matrix, aadis the prior. Let the configuration,
represent the hidden state of the model at tignend letO, be the observation at that
time. There is a finite set of stat&s= {(1,1),...,(M, N)} corresponding to each
pose and view angle. The state transition probability(i5 j) = P(ci+1 = sjlct = s5),
si,s; € S, i.e., the probability of being in statg at timet¢ + 1 given that the current
state iss;. The observation probability is given t§(j,t) = P(O|c; = s; ), i.e., the
probability of observing), at timet given that the current state 4. Given the HMM
A = (A, B,7), and series of observatiod® = {Oy,...,Or}, our goal is to find the
sequence of stat&s= {co, ..., cr} such that the joint probability of the observation
sequence and the state sequence given the ni{d&IC|)\) is maximized.

The state transition probability between two states: (m;, n;) ands; = (m;,n;)
is predefined to be

d)ngg/-t if n; =n; andmj =m;+1
p(SJ‘SZ) = ¢remain i n; =ny andmj =m; . (5)
0 otherwise

whereg, .., = 0.51 is the probability of transitioning to the next pose, and,.qin =
0.43 is the probability of remaining in the same pose. Note thatnhantioned earlier,
the transition probability from one view to another view &@, creating effectively a
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disconnected HMM. The observation probability is given byoamalized exponential
of the Euclidean distance between the test and trainingomatéscriptors. The opti-
mum state sequendcefor the HMM is then computed using the Viterbi algorithm.

4 Experimental Results

Our approach was tested on a variety of sequences of walkimguhs from different
viewpoints, scales, and illumination conditions. The déts of articulated bodies is
performed by computing the motion descriptor to each pix¢he image at three dif-
ferent scales and projecting the descriptor onto a line terdene the similarity with
respect to a model of human motion. A strength map is gercenadiécating the proba-
bility of a person being at that location and scale, and theimam of the strength map
is used as the location and scale of the target. Figure 5 shoman detection based
on this procedure. The unique characteristics of humanamethen compared to other
motions present in natural scenes is clear from the abifisuch a simple procedure
to detect the people. Using only motion information, thesperis correctly detected
in each sequence, even when the camera is moving, becaysdifterlences between
motion vectors are used. Once the person has been deteat=s-Kanade point fea-
tures are tracked through the image sequence, and thedloeatd scale of the person
is updated using the tracked points attached to the dettiget. The entire process is
fully automatic.

Fig. 5. Articulated motion detection for various viewpoints: right profile, left gefat an angle,
and frontal. In the bottom row, the camera is moving.

Figure 6 shows the pose estimation results for sequencesredgrom various
viewpoints. Each sequence covers an entire gait cycle. fitlefigure models corre-
spond to the nearest configuration found in the training bgtdne HMM. It is impor-
tant to keep in mind that point feature tracks are not veryigate in sequences such
as these involving non-rigid motion and large amounts ofuston, and a large num-
ber of point features belonging to the background causeerinishe data, especially
when the camera is moving. Moreover, when the person walkartbor away from the
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camera (frontal view), the pose estimation is difficult doette ambiguity in motion.
Nevertheless, the estimated poses are qualitativelyaorre

The last row of the figures shows a sequence captured at njigintinfrared camera.
The person is wearing a special body suit fitted with refletioat reflect the light emit-
ted by the headlights of an oncoming vehicle. This suit hanhesed in psychological
studies of the effectiveness of reflectors for pedestridetysay exploiting the biomo-
tion capabilities of the human visual system of automobileeds [22]. The utility of
a purely motion based approach can be especially seen isdbisgence, in which no
appearance information is available. Even without suabrinfition, the motion vectors
are highly effective within the current framework for eséitimg the pose. To provide
guantitative evaluation, Figure 7 shows the estimated kneées at every frame of the
right profile view and the frontal view sequences, along it ground truth.

Fig. 6. Top to bottom: Pose estimation for four frames from several seqeerigbt profile view,
left profile view, angular view, frontal view, and profile view at night wigflectors.

As can be seen from these results, our approach offers sadeemtages over previ-
ous motion-based approaches [3, 18,17, 21]. First, it @riamt to scale and viewpoint,
and it is able to deal with noisy video sequences captured &ianoving camera. In
contrast, many of the previous algorithms rely on a statimera, tightly controlled
imaging conditions, and/or a particular walking directi@ng., profile view). Another
advantage of our approach is that it is easy to train, raggionly a small amount of
training data since there is no need to account for all theatirans in appearance that
occur in real imagery. Since the estimated poses of our apprare necessarily tied
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Fig. 7. Estimated and ground truth knee angles for two sequences. The tofhoms the right
knee, while the bottom row shows the left knee.

to the training data, it is not possible to recover arbitlaogly poses not seen in the
training data. Nevertheless, it may possible to train alamdetector to handle various
other actions such as running or hand waving with apprapdata.

5 Conclusion

Motion is a powerful cue that can be effectively utilized Baological motion analysis.

We have presented a motion-based approach for detectimhkjrig, and pose estima-
tion of articulated human motion that is invariant of scalewpoint, illumination, and

camera motion. In this spirit of one-shot learning, the apph utilizes only a small

amount of training data. The spatial properties of humarionare modeled using a
novel descriptor, while temporal dependency is modeledguan HMM. A clear ad-

vantage of using a purely motion based approach is demtedtia pose estimation
in nighttime sequences where no appearance informatioveitahle. In demonstrat-
ing the effectiveness of motion information alone, our ii@n is not to discount the
importance of appearance information but rather to hidptltge effectiveness of this
particular cue. Future work involves exploring ways of@artated motion detection in
the presence of noise, allowing the subjects to change wietgas they are tracked,
combining the bottom-up and top-down approach for more ratelpose estimation,
and incorporating appearance information for increasbdsimess.
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