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ABSTRACT

The problem of tracking involves challenges like in-plane and
out-of-plane rotations, scaling, variations in ambient light and
occlusions. In this paper we look at the problem of tracking a
person’s head and also estimating its pose in each frame. Ro-
bust tracking can be achieved by reducing the dimensional-
ity of high-dimensional training data and using the recovered
low-dimensional structure to estimate the state of an object
at every time-step with recursive Bayesian filtering. Isomet-
ric feature mapping, also known as Isomap, provides an un-
supervised framework to find the true degrees of freedom in
high-dimensional input data like a person’s head with varying
poses. After the data has been reduced to lower dimensions
a particle filter can be used to track and at the same time ap-
proximate the pose of a person’s head in any image sequence.
Isomap tracking with particle filtering is capable of handling
rapid translation and out-of-plane rotation of a person’s head
with a relatively small amount of training data. The perfor-
mance of the tracker is demonstrated on an image sequence
with a person’s head undergoing translation and out-of-plane
rotation.
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1. INTRODUCTION

AlthoughN × N images of an arbitrary object are of dimen-
sionN2, sequential images of a semi-rigid object, such as a
person’s head, are of significantly lower dimension. Varia-
tions in the image of a head are due to a small number of
factors such as translation, rotation, and scaling, as wellas
lighting conditions, occlusions, or facial expression. Reduc-
ing the dimensionality is crucial to capture the meaningful
axes in the data space in order to effectively estimate the lo-
cation and pose of the object.

In this work we focus upon tracking a person’s head using
six independent degrees of freedom corresponding to rotation
and translation in three dimensions. In our approach we start

with a training data set consisting of grayscale images of a
person’s head at various up-down poses and left-right poses.
To find the independent degrees of freedom, we utilize a di-
mensionality reduction technique. There are different dimen-
sionality reduction techniques like principal component anal-
ysis (PCA), multidimensional scaling (MDS) [1], isometric
feature mapping (Isomap) [2] and locally linear embedding
(LLE) [3]. PCA finds the low dimensional embedding that
preserves the variance in the data while MDS finds an em-
bedding that preserves the inter-point distances in the data.
Both fail to discover the true degrees of freedom in datasets
which contain non-linear structures as shown by Tenenbaum
et al. [2]. Isomap is an improvement over MDS because it first
computes the geodesic distances between all pairs of points
in higher dimensional space and then applies MDS, yielding
much better results [2].

Tracking the state of a system can be achieved in the frame-
work of recursive Bayesian filtering. In this approach one
attempts to construct the posterior probability density func-
tion (pdf) of the state of a system based on a system model,
which describes the dynamic evolution of state with time, and
a measurement model, which relates the noisy measurements
to the state of the system. The three main steps in recursive
Bayesian filtering are prediction (using a system model), mea-
surement (using a measurement model), and update based on
the measurements. The pdf obtained at the current step in time
is used as a prior for the next step. The broadly used meth-
ods under the Bayesian framework are Kalman filters [4], ex-
tended Kalman filters and particle filters [5]. A Kalman filter
uses linear system models while the extended Kalman filter
approximates non-linear system models, but both assume the
posterior probability density to be Gaussian. Particle filters,
on the other hand, have no such assumption and therefore per-
form better when the posterior densities are non-Gaussian.
Particle filtering has many variations explained by Arulam-
palam et al. [5]. We use the Condensation algorithm [6] be-
cause it has an advantage that the weights can be easily cal-
culated.

Section 2 describes the Isomap algorithm and also presents



Fig. 1. Sample images from the training set.

the results given by the algorithm on the training data used for
this experiment. Section 3 explains the implementation of the
particle filtering algorithm used for tracking. The resultsare
reported in Section 4 with some conclusions in Section 5.

2. ISOMAP

2.1. Isomap algorithm

Isomap algorithm [2] has three steps. The algorithm takes as
input the distances between all pairs fromN data points in the
high-dimensional input spaceX, measured in some domain-
specific metric, e.g., Euclidean distance. The algorithm out-
puts coordinates in ad-dimensional Euclidean space which
best represents the intrinsic geometry of the data. The three
steps of the algorithm are as follows:

1. Construct neighborhood graph:A point is a neighbor
of any other point if it lies within a fixed radiusǫ or
is one of theK closest points to it. The neighborhood
graph is constructed with edges equal to the distance
between the points.

2. Compute shortest paths:In this step the geodesic dis-
tance between all points is calculated by computing the
shortest paths in the neighborhood graph.

3. Constructd-dimensional embedding:Classical MDS is
applied in this last step to obtain a low-dimensional em-
bedding of the data. Thus the prime difference between
MDS and Isomap is the use of geodesic distances in
Isomap.

2.2. Results given by Isomap on the training data used for
the experiment

The training data used for this experiment include 145 grayscale
images of size151× 151 pixels. A few samples are shown in
Figure 1. These images include a person’s head varying in up-
down pose and left-right pose with no variation in the ambi-
ent light and no rotation of the head in the plane of the image.
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Fig. 2. (a) Plot of the residual variance vs. dimensionality
for the training data. It can be seen that the curve elbows at
dimensionality 3. (b) The low-dimensional structure recov-
ered by Isomap from the high-dimensional data. It resembles
a tetrahedron.
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Fig. 3. Two different two-dimensional views of the low-
dimensional structure with training templates corresponding
to some points placed near them to help visualize how the
high-dimensional(151 × 151) points are embedded in 3D.

In-plane rotated templates are not included in the trainingset
because such rotation is handled in the particle filter itself.
We use SSD between all pairs of images as the distance met-
ric for computing Isomap. Other distance measures like the
Hausdorff distance [7] or chamfer distance [8] can be used to
improve the performance of Isomap [9].

Figure 2a shows that the residual variance vs. dimension-
ality plot elbows at dimensionality of 3 which means that the
high-dimensional face data can be well represented in three
dimensions. Figure 2b shows the arrangement of the points in
three dimensions given by Isomap. With the face data vary-
ing in up-down pose and the left-right pose, one would expect
Isomap to recover only two degrees of freedom. Any face
has a vertical axis of symmetry but no horizontal axis of sym-
metry which might explain why Isomap puts the data on the
arms of a structure giving maximum distance between the ex-
treme poses. Every arm on this structure is basically the lower
dimensional representation of the head moving in one partic-
ular direction with the face looking straight ahead placed at
the center. Note in Figure 2b and Figure 3 that the arms of
the structure are almost linear. This shape is useful, as will be
shown in Section 3.2.



3. ISOMAP TRACKING WITH PARTICLE
FILTERING

This section explains how the data embedded in 3 dimensions
can be used by a particle filter to track a person’s head and es-
timate its pose at any given time frame. The particle filter [6]
has three steps which are resampling, predict(drift and dif-
fuse) and update. We use 1000 particles for this experiment.
Every particle is characterized by a 7-parameter state vector
comprising of 2D translational coordinates, 3D coordinates
given by Isomap, in-plane rotation parameter and scaling pa-
rameter. The following subsections explain the implementa-
tion and the design of the particle filter.

3.1. Initialization of state of the particles

Since there is no priorp (xt|xt−1) from which to sample at
time t = 0, we initialize the in-plane-rotation and the scale of
the particles randomly within certain limits. The 2D position
of the particles are initialized near the person’s face in the first
image of the test sequence, while the 3D Isomap coordinates
are initialized at the base of the four arms (near point (0,0,0)
of the Isomap coordinate system). For automatic initializa-
tion, one could simply start with a higher number of particles
and gradually throw away the unsubstantial ones.

3.2. System Model

We use a linear stochastic equation [6] of the form

st(n) = As
′

t(n) + Bwt(n)

wherewt(n) is a vector of standard normal random variates
andBBT is the process covariance noise. The deterministic
component of the motion is modeled under the assumption
of constant velocity [10] and the system noise is modeled as
Gaussian. The arms are approximated as straight lines and
the particles are made to reside only on these arms. Now the
interesting question is how to handle any head pose that is
absent from the training data in a test sequence? Fortunately
any such pose can be roughly approximated as a combina-
tion of an out-of-plane training template and an in-plane ro-
tation. This makes up for the missing poses in the training
data since it is not really possible to have all possible poses in
the training data. To make the tracking efficient an Isomap-
arm-switching model is used for the particles. In this model
if the particles are very close to the base of the Isomap-arm
and moving with a negative velocity they can drift onto other
arms with some fixed probability.

3.3. Measurement Model

There is a rectangular patch in a test image associated with
every particle given by its parameters, i.e.,x-y coordinates,
scale, and in-plane rotation. Every training template has 3D
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Fig. 4. (a) Image from the test sequence. (b) Image patch
associated with a particle. (c) Template closest to the particle.
(d) Mask of image ‘c’ put on image ‘b’

Isomap coordinates. A particle is associated with a training
template based on the minimum Euclidean distance between
3D Isomap coordinates of the training template and the 3D
Isomap coordinates of the particle. The SSD between these
two is computed only at the pixels where the intensity of the
training template is non-zero, thus masking the background
in the image patch and is used to compute the weight of the
particle. Figure 4 illustrates the idea. These weights are used
to form the pdf for the next state which is given by

p (x0:k|z1:k) ≈
∑

N

i=1w
i

k
δ
(

x0:k − xi

0:k

)

3.4. Pose estimate

The weighted mean of the particles gives the estimate of the
state of the system. The weighted mean of Isomap coordi-
nates together with the in-plane rotation of the particle gives
the 3D pose estimate of the person’s head.

4. RESULTS

The tracker was tested on a separate image sequence with the
same person’s head undergoing translation and out-of-plane
rotation. Tracking results are shown in Figure 5. The tracker
successfully tracked the head of the person with a reasonably
accurate estimation of the 3D pose. The tracker handled the
out-of-plane rotation, the in-plane rotation and the rapidtrans-
lation of the person’s head. The tracker can also track the head
in frames 50 through 60 even though the training data does not
contain images which can exactly match these data. This val-
idates our claim made in Section 3.2 about the approximation
of such poses.

5. CONCLUSIONS

The results show that Isomap tracking with particle filtering
is a good technique for tracking and pose-estimation of a per-
son’s head with a relatively small training data set. The other



frame 5 frame 11 frame 18 frame 24

frame 30 frame 35 frame 40 frame 45

frame 50 frame 54 frame 58 frame 65

Fig. 5. Tracking results, shown as a blue square outlining the head. The vector inside the circle at the top-left corner of
every frame gives the 2D out-of-plane rotation. In the circle the vertical axis represents the up-down pose and horizontal axis
represents right-left pose. The length of the vector is directly proportional to the amount of rotation.

advantage of using this technique is that the particles run in-
dependently of each other except when they are resampled.
Thus, this technique can be an excellent candidate for parallel
computing.

This being just a preliminary attempt to use Isomap with
a particle filter there are various areas of improvement. Find-
ing a better distance measure for Isomap would make it more
robust to noise and yield more accurate lower-dimensional
structures. Further research needs to be done on the measure-
ment model and weighting functions so that the tracker can
handle occlusions, ambient light variations and large noise.
This technique can be extended to track any kind of object if
its training data is available.
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