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Figure 1: Ellipse fitting: detection of features on both pupil and iris boundaries; ellipses fit to sets of 5 randomly selected points; luminance-
based delineation of features into two sets; proper detection of erroneous ellipse spanning both pupil and iris.

Abstract

We present a low-cost wearable eye tracker built from off-the-shelf
components. Based on the open source openEyes project (the only
other similar effort that we are aware of), our eye tracker operates
in the visible spectrum and variable lighting conditions. The nov-
elty of our approach rests in automatically switching between track-
ing the pupil/iris boundary in bright light to tracking the iris/sclera
boundary (limbus) in dim light. Additional improvements include
a semi-automatic procedure for calibrating the eye and scene cam-
eras, as well as an automatic procedure for initializing the location
of the pupil in the first image frame. The system is accurate to two
degrees visual angle in both indoor and outdoor environments.
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1 Introduction

Wearable eye trackers allow collection of eye movements during
the performance of natural tasks outside the laboratory, often al-
lowing the use of unconstrained eye, head, and hand movements.
Compared with the wealth of data obtained in laboratory settings,
relatively little work has been done to collect eye movement data
during the performance of such tasks, however. Current wearable
trackers are scarce, expensive, and/or uncomfortable due to heavy
headgear or equipment. Another serious limitation is their inability
to handle variable lighting conditions, particularly in outdoor envi-
ronments.

Figure 2: Our do-it-yourself wearable eye tracker from relatively
inexpensive (∼$700) off-the-shelf components.

In this paper we describe a wearable eye tracker built with rela-
tively inexpensive off-the-shelf components that is as comfortable
to wear as a pair of plastic safety glasses (Figure 2). We are aware
of only one other effort at development of a cheap, accurate, wear-
able eye tracker: the open source openEyes project [Li et al. 2006].

2 Previous Work

Modern eye tracking technology relies on cameras. Image process-
ing methods are used to locate and track the pupil (and sometimes
the corneal reflection of IR LEDs). In addition to tracking of the
pupil, the corneal reflection (glint) of the auxiliary (IR) light source
allows computation of the user’s gaze point in the scene, if it can
be reasonably assumed that the corneal glint is fixed with respect to
the translating pupil. This is the technique employed by Babcock
and Pelz’s [2004] wearable eye tracker (an IR LED is positioned
off-axis just to the left of the eye imaging camera). A laser diode
is used to project points in the user’s visual field to enable calibra-
tion of the tracker to the individual and subsequent Point Of Gaze
(POG) calculation.

During calibration, the user is prompted to look at a series of
points usually laid out in a grid pattern. Pupil and corneal glint fea-
tures are recorded at each calibration point and used to fit a mapping
from these features to the point of gaze in the scene.



Figure 3: In theStarburst algorithm, rays are cast outward from an initial seed point assumed to lie within close proximity to the pupil, then
cast back toward the center to generate additional points.

Infra-red illumination offers certain benefits due to the availabil-
ity of an additional trackable feature (the corneal reflection). How-
ever, it may simultaneously pose a restriction on where the tracker
can be used. For example, operation in sunlight has been problem-
atic.

To allow operation in the visible spectrum, and to simplify com-
plexity while reducing cost, Li and Parkhurst [2006] adopted the
technique of limbus tracking (see below). Elimination of IR illu-
mination simplifies the tracker’s design by removing several com-
ponents: the IR LED as well as a voltage regulator which required
additional circuitry. Provided the headgear is sufficiently stable,
any fixed point in the eye image frame can be used as an acceptable
reference point for POG estimation. Although Li and Parkhurst’s
openEyes wearable eye tracker has matured to allow operation in
the visible spectrum with an accuracy of about 1◦, it is limited in
several ways. Being a limbus tracker, it may not function particu-
larly well under variable light conditions, i.e., in bright light when
the contrast of the iris/sclera boundary is masked by specular re-
flections. Furthermore, user intervention is required at startup, e.g.,
the initial eye location is entered manually.

Our primary contribution is a mechanism for automatically
switching between limbus and pupil/iris detection. Like Li and
Parkhurst’s eye tracker, ours also operates in the visible spectrum
as well as in variable light conditions.

3 Pupil and Limbus Tracking

There are currently two basic approaches to POG calculation. The
first is based on a 3D model of the eyeball and the computation of a
ray emanating from a central point within the eye. The POG is then
calculated (parametrically) as the intersection of the ray and some
surface of interest in the environment (for example, see Hennessey
et al. [2006]).

To develop a wearable eye tracker, Pelz et al. [2000] and then
Li et al. [2006] took a second approach based on traditional video-
oculography (VOG). The goal is to estimate(x,y), a vector from
some static reference point in the eye image to the center of the
limbus, with the limbus defined by an ellipse fit to the iris/sclera
boundary (the vector will pivot as the eye rotates). To accomplish
this, Li et al. [2005] proposed theStarburst algorithm, in which
rays are projected from an initial starting point to detect pixels with
high image gradients, then backprojected toward the center to in-
crease the number of pixels prior to ellipse fitting. We adopt this as
our starting point. Our approach differs, however, by automatically
switching between tracking the edge of the pupil and tracking the
limbus, allowing operation in variable light conditions. Processing
a video frame involves three steps: image preprocessing, feature
detection, and ellipse fitting.

Image Preprocessing. Like the Starburst algorithm, our ap-
proach begins by convolving the eye camera image with a Gaussian
filter to reduce camera shot noise and lossy image compression arti-
facts resulting from the off-the-shelf camera. We combine Gaussian

smoothing and differentiation into a single filter, enabling the com-
putation of the image gradient with a single convolution. This is
a simplification of theStarburst approach in which the gradient is
only computed on an as-needed basis during feature detection.

Feature Detection. The purpose of feature detection is to lo-
cate pixels on the limbus or pupil boundary. These boundary points
are found in two steps. As inStarburst, candidate feature points
are found by casting rays out from an initial seed point and termi-
nating the ray as it exits a dark region. We determine if the ray is
exiting a dark region by checking the gradient magnitude and direc-
tion (see Figure 3). The feature detection process is then repeated
with rays cast back from candidate boundary features toward the
seed point, along rays within±φ degrees of the ray that generated
the candidate boundary point (we setφ = 30). This additional step
tends to increase the ratio of the number of feature points on the
desired boundary over the number of feature points not on the pupil
contour [Li et al. 2006]. The ray does not terminate until the magni-
tude of the gradient component collinear with the ray exceeds some
predetermined threshold. Although this technique is effective and
efficient in some lighting conditions it is sensitive to the threshold
chosen. Identification of an ideal threshold is confounded by the
fact that higher thresholds are more effective in bright light, giv-
ing way to lower thresholds in dim light. Our algorithm iterates
through multiple thresholds. Ellipses are fit to points generated at
each threshold. Only the best ellipses are retained (see below).

Ellipse Fitting. The Starburst implementation uses Random
Sample Consensus (RANSAC) [Fischler and Bolles 1981] to fit
ellipses to the feature points, chosen for its tolerance to outliers,
which are common in the observed feature sets. RANSAC pro-
ceeds in two steps: a population of ellipses is first generated, then
the ellipses are evaluated to retain only the ones fitting best. Each
ellipse is generated from five feature points selected at random. A
conic section is fit to the selected points [Fitzgibbon et al. 1999].
Many such ellipses are created, and the number of feature points
within some small epsilon of the ellipse is counted. The ellipse
with the highest count is retained.

Our algorithm also utilizes a two step process. We generate ran-
dom ellipses in a similar manner, but rather than evaluating them
based upon a characteristic of the feature set, we evaluate them
based upon characteristics of the original image. We label each
pixel that the ellipse passes through as acceptable or not depend-
ing upon the magnitude and direction of the gradient at that pixel.
The percentage of acceptable pixels is computed. The ellipse with
the highest ratio is retained. This modification makes the algorithm
more tolerant to poorly localized feature sets.

Starburst’s ellipse fitting is further complicated by its inability
to distinguish ellipses that partially span the pupil and those that
partially span the limbus from those that exclusively adhere to one
or the other. We suggest that the feature points be split into two
groups based upon pixel luminance, simply partitioning them about
the median value. Pixels on the pupil boundary are expected to ex-
hibit lower luminance values than those on the limbus. This form of



(a) scene frame (b) low threshold (c) largest region (d) after flood fill (e) high threshold (f) final result

Figure 4: Automatic calibration depends on synchronization of eye and scene camera images and automatic detection of calibration dots
based on thresholding.

feature point splitting allows the creation of two sets of ellipses, one
corresponding to the iris/sclera limbus, the other to the pupil/iris
boundary.

Figure 1 shows example results of feature detection. When el-
lipses are fit to all the points, erroneous ellipses are generated that
span both the pupil and iris boundaries. By identifying and distin-
guishing between the points on the pupil and iris boundaries, such
erroneous ellipses are less frequently created.

Switching between pupil and limbus is handled implicitly. The
combination of multiple thresholds along with feature point split-
ting allows the algorithm to smoothly transition from tracking the
pupil in bright light to tracking the limbus in dim light.

4 System

Figure 5: Eye tracker assembly.

Hardware. We use the same hardware design described by Li
et al. [2006], with minimal modifications as necessary to facilitate
material availability. The apparatus is constructed entirely from in-
expensive commercial off-the-shelf (COTS) components. The sim-
plicity of the design facilitates easy construction requiring only a
minimal amount of expertise (see Figure 5). The entire parts list for
the device include one pair of safety glasses (AOSafety X-Factor
XF503), the more comfortable nose piece of a second pair of plastic
sunglasses (AOSafety I-Riot 90714), black polyester braided elas-
tic for wrapping the wires, two screws to connect the scene camera
bracket and nose piece, a small aluminum or brass rod for mounting
the eye camera, and two digital video minicams.

We use inexpensive digital video minicams (Camwear Model
200) from DejaView [Reich et al. 2004]. Each DejaView wearable
digital mini-camcorder uses the NW901 MPEG-4 CODEC from
Divio, Inc., enabling MPEG-4 video recording at 30 fps. Video is
recorded on 512MB SD mini disks for offline processing.

Synchronization. The method requires the collection of two
synchronized video sequences, one of the eye, the other of the scene
being viewed. It cannot be assumed that the eye and scene cameras

begin recording at exactly the same time. It is therefore necessary to
synchronize the video streams of both cameras. As suggested by Li
and Parkhurst [2006], a flash of light visible in both videos is used
as a marker. We have employed an LCD monitor to display cali-
bration dots, we therefore found it convenient to flash the monitor
in order to create the short burst of light necessary for synchroniza-
tion. We flash the monitor again to signal the end of calibration.
The light from the monitor is sufficiently bright to be automatically
identified in both video streams.

Calibration. We adopted the traditional video-oculography ap-
proach of calculating the point of gaze. In this approach, the image
coordinates(x,y) of the center of the fitted ellipse are mapped to
scene coordinates(sx,sy) using a second order polynomial [Mori-
moto and Mimica 2005]:

sx = a0 +a1x+a2y+a3xy+a4x2 +a5y2

sy = b0 +b1x+b2y+b3xy+b4x2 +b5y2
.

Calibration requires the viewer to sequentially view a set of spa-
tially distributed calibration points with known scene coordinates.
This correspondence is used to compute the unknown parameters
ak andbk via Lagrange’s method of least squares.

The calibration points are displayed on a computer monitor and
detected automatically in the scene camera image using a straight-
forward process illustrated in Figure 4. First, a low level threshold
is applied to the image, and the largest dark region is assumed to be
the computer screen (holes are eliminated in the largest region us-
ing a modified flood fill algorithm). A high-level threshold applied
to the original image identifies candidate calibration points, and a
logical AND operation applied to the computer screen image and
the calibration points image yields the desired calibration point.

Initialization of Pupil Location. Even though theStarburst
algorithm is able to accurately find the pupil center, it only performs
a local search. It therefore needs a good starting point from which
to begin searching. For frames in the middle of the video we may
simply use the result from the previous frame, but for the first frame
some other method must be devised. In contrast to the approach
of Li et al. [2006], which requires manual entry of the initial start
point, we have developed a fully automated solution.

(a) raw frame (b) Canny edges (c) chamfer image (d) pattern

Figure 6: Pre-processing steps for pupil/limbus pattern matching.

Our automatic localization of the pupil is based on the template
matching algorithm of Borgefors [1988], which begins with the
Canny [1983] edge detector on both the image to be searched and



a template of the object to be searched for. It then creates a cham-
fer image for which each pixel value is set to its distance from the
nearest edge pixel. As suggested by Gavrila and Philomin [1999],
a search map is then created by convolving the edge detected tem-
plate with the chamfer image. The pixel in the search map with
lowest value is the most likely location for the object.

One limitation of the standard chamfer algorithm is that it con-
siders only the magnitude of the gradient of the image. Borrowing
from the elliptical head tracking work of Birchfield [1998], we ex-
tend the algorithm to incorporate the direction of the gradient as
well as the magnitude. Since the gradient is already computed by
the Canny algorithm, the modification is straightforward. After in-
verting the chamfer image, we normalize the gradients for both the
template and the search image, then augment the convolution op-
eration with the dot product of the normalized gradient. Finally,
the highest value in the search map is taken to be the most likely
location.

Figure 7: Effect of using the gradient direction to locate pixels as-
sociated with the pupil. The left image pair considers only edge
distance, while the right pair also considers gradient direction.

5 Experimental Results

After applying a simple 5-tap FIR smoothing filter to the calculated
gaze point, we display a simple cross hair at its location, as illus-
trated in Figure 8. Accuracy analysis refers to the gaze point after
smoothing.

Figure 8: Cross hairs indicate point of gaze.

We evaluate our implementation by first calculating calibration
coefficients. We then reprocess the same video, tracking the dis-
parity between mapped gaze points and tracked calibration dots.
We calculate the Euclidean distance between the mean calibration
dot center and the mean gaze point over the period of gaze dot
display. This distance is our error measurement given in pixels.
The DejaView camera has approximately a 60◦ field of view, with
video resolution of 320×240. Therefore a simple multiplication by
0.1875 converts our units of measurement from pixels to degrees
visual angle. Using this metric, we were able to track the eye in
three separate videos each with an average error less than 2◦.

6 Conclusion

We have made three significant improvements upon previous work.
The first two, initial pupil location detection and calibration dot
tracking, improve ease of use by reducing the necessity for user in-
tervention. Our third improvement, feature point luminance delin-

eation, improves eye tracking versatility by allowing the algorithm
to better distinguish between the pupil boundary and the limbus.
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