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Figure 1: Ellipse fitting: detection of features on both pupil and iris bouadaellipses fit to sets of 5 randomly selected points; luminance-
based delineation of features into two sets; proper detection of erreedijpse spanning both pupil and iris.

Abstract

We present a low-cost wearable eye tracker built from off-the-shelf
components. Based on the open source openEyes project (the only
other similar effort that we are aware of), our eye tracker operates
in the visible spectrum and variable lighting conditions. The nov-
elty of our approach rests in automatically switching between track-
ing the pupil/iris boundary in bright light to tracking the iris/sclera
boundary (limbus) in dim light. Additional improvements include

a semi-automatic procedure for calibrating the eye and scene cam-
eras, as well as an automatic procedure for initializing the location
of the pupil in the first image frame. The system is accurate to two
degrees visual angle in both indoor and outdoor environments.  Figure 2: Our do-it-yourself wearable eye tracker from relatively
inexpensive £$700) off-the-shelf components.
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In this paper we describe a wearable eye tracker built with rela-

Keywords: Wearable eye tracking, limbus tracking tively inexpensive off-the-shelf components that is as comfortable
to wear as a pair of plastic safety glasses (Figure 2). We are aware
of only one other effort at development of a cheap, accurate -wear

1 Introduction able eye tracker: the open source openEyes project [Li et al. 2006]

Wearable eye trackers allow collection of eye movements during
the performance of natural tasks outside the laboratory, often al-
lowing the use of unconstrained eye, head, and hand movements
Compared with the wealth of data obtained in laboratory settings,
relatively little work has been done to collect eye movement data
during the performance of such tasks, however. Current wearable
trackers are scarce, expensive, and/or uncomfortable due tg heav
headgear or equipment. Another serious limitation is their inability
to handle variable lighting conditions, particularly in outdoor envi-
ronments.

2 Previous Work

Modern eye tracking technology relies on cameras. Image process-
ing methods are used to locate and track the pupil (and sometimes
the corneal reflection of IR LEDs). In addition to tracking of the
pupil, the corneal reflection (glint) of the auxiliary (IR) light source
allows computation of the user's gaze point in the scene, if it can
be reasonably assumed that the corneal glint is fixed with respect to
the translating pupil. This is the technique employed by Babcock
and Pelz’s [2004] wearable eye tracker (an IR LED is positioned
off-axis just to the left of the eye imaging camera). A laser diode
is used to project points in the user’s visual field to enable calibra-
tion of the tracker to the individual and subsequent Point Of Gaze
(POG) calculation.

During calibration, the user is prompted to look at a series of
points usually laid out in a grid pattern. Pupil and corneal glint fea-
tures are recorded at each calibration point and used to fit a mapping
from these features to the point of gaze in the scene.




Figure 3: In theStarburst algorithm, rays are cast outward from an initial seed point assumed tathignwlose proximity to the pupil, then
cast back toward the center to generate additional points.

Infra-red illumination offers certain benefits due to the availabil- smoothing and differentiation into a single filter, enabling the com-
ity of an additional trackable feature (the corneal reflection). How- putation of the image gradient with a single convolution. This is
ever, it may simultaneously pose a restriction on where the tracker a simplification of theStarburst approach in which the gradient is
can be used. For example, operation in sunlight has been problem-only computed on an as-needed basis during feature detection.
atic.

To allow operation in the visible spectrum, and to simplify com-
plexity while reducing cost, Li and Parkhurst [2006] adopted the
technique of limbus tracking (see below). Elimination of IR illu-
mination simplifies the tracker’'s design by removing several com-
ponents: the IR LED as well as a voltage regulator which required
additional circuitry. Provided the headgear is sufficiently stable,
any fixed point in the eye image frame can be used as an acceptabl
reference point for POG estimation. Although Li and Parkhurst’s
openEyes wearable eye tracker has matured to allow operation in
the visible spectrum with an accuracy of aboti it is limited in
several ways. Being a limbus tracker, it may not function particu-
larly well under variable light conditions, i.e., in bright light when
the contrast of the iris/sclera boundary is masked by specular re-

f'eCt.iO.f?S- Furtherm_ore_, user intervention is required at startup, €.9-tude of the gradient component collinear with the ray exceeds some
the initial eye Iocat|on.|s gntergd manually. . . predetermined threshold. Although this technique is effective and
Our primary contribution is a mechanism for automatically gficient in some lighting conditions it is sensitive to the threshold
switching between limbus and pupiliiris detection. Like Li and cpagen. |dentification of an ideal threshold is confounded by the
Parkhurst's eye tracker, ours also operates in the visible spectruMgac; that higher thresholds are more effective in bright light, giv-
as well as in variable light conditions. ing way to lower thresholds in dim light. Our algorithm iterates
through multiple thresholds. Ellipses are fit to points generated at
each threshold. Only the best ellipses are retained (see below).

Feature Detection. The purpose of feature detection is to lo-
cate pixels on the limbus or pupil boundary. These boundary points
are found in two steps. As iftarburst, candidate feature points
are found by casting rays out from an initial seed point and termi-
nating the ray as it exits a dark region. We determine if the ray is
exiting a dark region by checking the gradient magnitude and direc-
&ion (see Figure 3). The feature detection process is then repeated
with rays cast back from candidate boundary features toward the
seed point, along rays withiti ¢ degrees of the ray that generated
the candidate boundary point (we get 30). This additional step
tends to increase the ratio of the number of feature points on the
desired boundary over the number of feature points not on the pupil
contour [Li et al. 2006]. The ray does not terminate until the magni-

3 Pupil and Limbus Tracking

; ; Ellipse Fitting. The Sarburst implementation uses Random

There are currently two basic approaches to POG calculation. The ! )
first is based on a 3D model of the eyeball and the computation of a S&mple Consensus (RANSAC) [Fischler and Bolles 1981] to fit
ray emanating from a central point within the eye. The POG is then ellipses to the feature points, chosen for its tolerance to outliers,
calculated (parametrically) as the intersection of the ray and someWhich are common in the observed feature sets. RANSAC pro-
surface of interest in the environment (for example, see Hennesseyc€€ds in two steps: a population of ellipses is first generated, then
et al. [2008]). thg elllpses are evaluated to retain only.the ones fitting best. Each

To develop a wearable eye tracker, Pelz et al. [2000] and then ellipse is generated from five feature points selected at random. A

Li et al. [2006] took a second approach based on traditional video- conic section is fit to the selected points [Fitzgibbon et al. 1999].
oculography (VOG). The goal is to estimatey), a vector from Many such ellipses are created, and the number of feature points
some static reference point in the eye image ’to the center of theW!th'n some small epslllon O.f the ellipse is counted. The ellipse
limbus, with the limbus defined by an ellipse fit to the iris/sclera W'tgthe Ih'gh?f't count s f etained. w

boundary (the vector will pivot as the eye rotates). To accomplish ur algorithm aiso utilizes a two step process. We generate ran-
this, Li et al. [2005] proposed thetarburst algorithm, in which dom ellipses in a S|m|Iar_m_anner, but rather than evaluating them
rays are projected from an initial starting point to detect pixels with Pased upon a characteristic of the feature set, we evaluate them

high image gradients, then backprojected toward the center to in- bfaseldhupoQ chﬁgracteristics ththe (;]riginal imag%.l we Iabc(ejl eacz
crease the number of pixels prior to ellipse fitting. We adopt this as PX€! that the ellipse passes through as acceptable or not depend-
our starting point. Our approach differs, however, by automatically N9 UPon the magnitude and direction of the gradient at that pixel.
switching between tracking the edge of the pupil and tracking the The percentage of acceptable pixels is computed. The ellipse with

limbus, allowing operation in variable light conditions. Processing the highest ratio is retained. .ThIS modification makes the algorithm
a video frame involves three steps: image preprocessing, feature™Cre tolera}nt to poorl_y _'OCQ"Zed feature sets. e
detection, and ellipse fitting. St_ar_burst_s elllpse fitting is further complicated _by its inability

to distinguish ellipses that partially span the pupil and those that

partially span the limbus from those that exclusively adhere to one
Image Preprocessing. Like the Sarburst algorithm, our ap- or the other. We suggest that the feature points be split into two
proach begins by convolving the eye camera image with a Gaussiangroups based upon pixel luminance, simply partitioning them about
filter to reduce camera shot noise and lossy image compression artithe median value. Pixels on the pupil boundary are expected to ex-
facts resulting from the off-the-shelf camera. We combine Gaussian hibit lower luminance values than those on the limbus. This form of



! I
/ \ >
] N - D
S i B\ - @ A

(b) low threshold (c) largest region (d) after flood fill (e) high thieeshol (f) final result

(a) scene frame

Figure 4: Automatic calibration depends on synchronization of eye agmmkescamera images and automatic detection of calibration dots
based on thresholding.

feature point splitting allows the creation of two sets of ellipses, one begin recording at exactly the same time. Itis therefore necessary to
corresponding to the iris/sclera limbus, the other to the pupil/iris synchronize the video streams of both cameras. As suggested by Li
boundary. and Parkhurst [2006], a flash of light visible in both videos is used
Figure 1 shows example results of feature detection. When el- as a marker. We have employed an LCD monitor to display cali-
lipses are fit to all the points, erroneous ellipses are generated thatbration dots, we therefore found it convenient to flash the monitor
span both the pupil and iris boundaries. By identifying and distin- in order to create the short burst of light necessary for synchroniza

guishing between the points on the pupil and iris boundaries, suchtion. We flash the monitor again to signal the end of calibration.

erroneous ellipses are less frequently created.

Switching between pupil and limbus is handled implicitly. The
combination of multiple thresholds along with feature point split-
ting allows the algorithm to smoothly transition from tracking the
pupil in bright light to tracking the limbus in dim light.

4 System
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Figure 5: Eye tracker assembly.

Hardware. We use the same hardware design described by Li
et al. [2006], with minimal modifications as necessary to facilitate
material availability. The apparatus is constructed entirely from in-

expensive commercial off-the-shelf (COTS) components. The sim-

plicity of the design facilitates easy construction requiring only a
minimal amount of expertise (see Figure 5). The entire parts list for

the device include one pair of safety glasses (AOSafety X-Factor
XF503), the more comfortable nose piece of a second pair of plastic
sunglasses (AOSafety I-Riot 90714), black polyester braided elas-
tic for wrapping the wires, two screws to connect the scene camera
bracket and nose piece, a small aluminum or brass rod for mounting

the eye camera, and two digital video minicams.

We use inexpensive digital video minicams (Camwear Model
200) from DejaView [Reich et al. 2004]. Each DejaView wearable
digital mini-camcorder uses the NW901 MPEG-4 CODEC from
Divio, Inc., enabling MPEG-4 video recording at 30 fps. Video is
recorded on 512MB SD mini disks for offline processing.

Synchronization. The method requires the collection of two

The light from the monitor is sufficiently bright to be automatically
identified in both video streams.

Calibration. We adopted the traditional video-oculography ap-
proach of calculating the point of gaze. In this approach, the image
coordinateqx,y) of the center of the fitted ellipse are mapped to
scene coordinatey, sy) using a second order polynomial [Mori-
moto and Mimica 2005]:

a0 + a1 X+ apy -+ agXy + agx + asy’
bg + biX+ by + baxy + bax® + bsy?.

S
Sy

Calibration requires the viewer to sequentially view a set of spa-
tially distributed calibration points with known scene coordinates.
This correspondence is used to compute the unknown parameters
a, andby via Lagrange’s method of least squares.

The calibration points are displayed on a computer monitor and
detected automatically in the scene camera image using a straight-
forward process illustrated in Figure 4. First, a low level threshold
is applied to the image, and the largest dark region is assumed to be
the computer screen (holes are eliminated in the largest region us-
ing a modified flood fill algorithm). A high-level threshold applied
to the original image identifies candidate calibration points, and a
logical AND operation applied to the computer screen image and
the calibration points image yields the desired calibration point.

Initialization of Pupil Location. Even though theXarburst
algorithm is able to accurately find the pupil center, it only performs
a local search. It therefore needs a good starting point from which
to begin searching. For frames in the middle of the video we may
simply use the result from the previous frame, but for the first frame
some other method must be devised. In contrast to the approach
of Li et al. [2006], which requires manual entry of the initial start
point, we have developed a fully automated solution.
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Figure 6: Pre-processing steps for pupil/limbus pattern matching.

Our automatic localization of the pupil is based on the template

synchronized video sequences, one of the eye, the other of the sceneatching algorithm of Borgefors [1988], which begins with the
being viewed. It cannot be assumed that the eye and scene cameraSanny [1983] edge detector on both the image to be searched and



a template of the object to be searched for. It then creates a cham-eation, improves eye tracking versatility by allowing the algorithm
fer image for which each pixel value is set to its distance from the to better distinguish between the pupil boundary and the limbus.
nearest edge pixel. As suggested by Gavrila and Philomin [1999],
a search map is then created by convolving the edge detected tem-
plate with the chamfer image. The pixel in the search map with References
lowest value is the most likely location for the object.
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