
Autonomous Navigation and Mapping Using
Monocular Low-Resolution Grayscale Vision

Vidya N. Murali Stanley T. Birchfield
Electrical and Computer Engineering Department

Clemson University, Clemson, SC 29634
{vmurali, stb}@clemson.edu

Workshop on Visual Localization for Mobile Platforms
(in association with CVPR)
Anchorage, Alaska, June 2008

c©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.

Abstract

An algorithm is proposed to answer the challenges of au-
tonomous corridor navigation and mapping by a mobile
robot equipped with a single forward-facing camera.
Using a combination of corridor ceiling lights, visual
homing, and entropy, the robot is able to perform straight
line navigation down the center of an unknown corridor.
Turning at the end of a corridor is accomplished using
Jeffrey divergence and time-to-collision, while deflection
from dead ends and blank walls uses a scalar entropy
measure of the entire image. When combined, these metrics
allow the robot to navigate in both textured and untextured
environments. The robot can autonomously explore an
unknown indoor environment, recovering from difficult
situations like corners, blank walls, and initial heading
toward a wall. While exploring, the algorithm constructs a
Voronoi-based topo-geometric map with nodes representing
distinctive places like doors, water fountains, and other
corridors. Because the algorithm is based entirely upon
low-resolution (32 × 24) grayscale images, processing
occurs at over 1000 frames per second.

1. Introduction

Psychological studies have shown that human intelli-
gence does not require high-resolution images to ascer-
tain information about the environment for basic naviga-
tion. The “selective degradation hypothesis”, developed by
Owens and Leibowitz [2], says that some visual abilities
such as vehicle steering and speed control remain relatively
easy despite loss in visual acuity and color vision. For
canonical tasks like walking or moving in a straight line,
only a small percentage of what we see is actually useful,
and in fact low-frequency information alone is sufficient
for success. Motivated by this idea, we have developed a
system that uses only low-resolution (32 × 24) grayscale
images to navigate a previously unknown corridor environ-

ment and to produce a Voronoi-based topo-geometric map
of the environment. By discarding 99% of the information
captured from a320 × 240 camera, the approach is com-
putationally efficient, freeing up much of the CPU for other
computation-intensive tasks, such as landmark recognition.

Navigating with a single camera is not easy. Perhaps
this is why many approaches rely upon depth measurements
from sonars, lasers, or stereo cameras to solve the problem.
Granted, knowledge of distances to either wall, the shape of
obstacles, and so on, would be directly useful for localizing
the robot and building a geometric map of the environment.
Lasers, however, are expensive and power-hungry, sonars
cause interference, and stereo vision has its own difficul-
ties (e.g., it requires texture to compute correspondence,is
computationally expensive, and produces inaccurate results
for many pixels). Indoor environments in particular often
lack texture, rendering stereo matching an elusive problem
in such places. In contrast, humans are quite good at navi-
gating indoors with one eye closed, even with blurry vision,
thus motivating us to find a different solution.

Our approach to navigation utilizes the ceiling lights and
image entropy to keep the robot centered as it travels down
the corridor. It is important to note that our approach does
not require the lights to be of a certain shape or location –
they may be in the center of the corridor, along both sides,
or distributed uniformly across. When the lights are not
visible, the robot determines whether it is at the end of the
corridor using a combination of entropy, Jeffrey divergence,
and time-to-collision. Turning is accomplished using the
same measures. With these basic behaviors, the robot is able
to autonomous wander an unknown indoor environment.

As the robot drives down the corridor, not all images
captured aresalient. Just as a human driving down a
highway often experiences long stretches of monotonous
scenery broken by intermittent landmarks, the robot per-
ceives salient regions along either side of the corridor a
small percentage of the time. In our approach to mapping,
the measures of image saliency indicate the presence of a
nearby landmark by a sudden increase in their value. These



salient images correspond to locations of landmarks in the
scene. The path followed by the robot along the corridor is
automatically augmented with salient locations that become
nodes in a Voronoi-based graph. Together, these form a map
representing the topology of the environment which can be
used for later localization and navigation tasks.

1.1. Previous Work

Vision-based mobile robot navigation has been studied
by many researchers. From the early work of the Stan-
ford Cart [29] to the current Aibo, navigation has been rec-
ognized as a fundamental capability that needs to be de-
veloped. According to the survey of DeSouzaet al. [15],
significant achievements have been made in indoor naviga-
tion, with FINALE [21] being one of the more successful
systems. FINALE requires a model-based geometric rep-
resentation of the environment and uses ultrasonic sensors
for obstacle avoidance. NEURO-NAV [27] is another oft
cited system that uses a topological representation of the
environment and responds to human-like commands. The
highly notable NAVLAB [36] and RHINO [7] are examples
of proficient outdoor navigation systems which use a com-
bination of vision and a wide variety of other sensors for
navigation and obstacle avoidance. Moravec [29] and Nel-
sonet al. [31], however, have emphasized the importance of
low-level vision in mobile robot navigation, and Horswill
[18] implemented a hierarchical and complete end-to-end
vision-based navigational robot based on prior training of
the environment.

One approach to navigation has been to use corridor
lights, which can achieve robust navigation even in long
corridors. In some systems, lights are used as landmarks in
a teach/replay approach, with the camera pointing toward
the ceiling [23]. The drawback of such a configuration, of
course, is that the robot is blind to anything in front of it,
not to mention that the system must be trained beforehand
on the environment to be navigated. In another implementa-
tion, ceiling lights are used as aids in straight line navigation
[22], but here again the camera points toward the ceiling,
and the position and orientation of the rectangular lights are
used for straight line navigation. Such a computation does
not generalize well to environments in which the lights are
not of a rectangular shape, or to robots with forward-facing
cameras. Choiet al. [9] use a forward facing camera for
detecting lights, but their approach also relies upon the ac-
tual geometrical features of the lamps, and it is restrained
by the lights disappearing from the field of view, which is
one of the main difficulties of forward-facing cameras. Our
approach incorporates computations to handle this difficulty
and to automatically detect and handle the end of a corridor,
without any prior training of the environment or restriction
on light shape.

With regard to mapping, the recent developments in Si-

multaneous Localization and Mapping (SLAM) have been
based primarily upon the use of range sensors [28, 32, 4].
A few researchers have applied this work to the problem of
building maps using monocular cameras, such as in the vS-
LAM approach [20], which is a software platform for visual
mapping and localization using sparse visual features. An
alternate approach is that of Davisonet al. [14, 13], who
also use sparse image features to build 3D geometric maps.
In these visual SLAM techniques, either a complex match-
ing process for a simple landmark representation [33] or a
simple matching process for a complex landmark represen-
tation [34] is needed for robust robot localization. In indoor
corridor environments, however, the lack of texture poses a
major obstacle to such an approach. Indeed, popular tech-
niques such as the Scale Invariant Feature Transform (SIFT)
[34] or other feature representations have difficulty in such
cases. Moreover, the computationally demanding nature of
these algorithms often leaves little room for additional pro-
cessing, and their design requires higher resolution images.

It is important to note that in most map-building sys-
tems, the robot is controlled manually. Autonomous map-
ping is rare, and autonomous vision-based mapping is even
more rare [15]. Notable initiatives include the work done
by Matsumotoet al. [24], who used omnidirectional cam-
eras with stereo and optical flow to control navigation, and
Shahet al. [35], who implemented an autonomous navi-
gation system using a calibrated fish eye stereo lens sys-
tem. However, these approaches require specialized cam-
eras. Similarly, autonomous vision-based navigation is rare,
with many techniques requiring a training phase in which
the robot is controlled manually [3, 8, 25, 26, 19]. As a
result, efficient autonomous map building of indoor envi-
ronments using a single off-the-shelf camera has remained
an elusive problem.

2. Autonomous Driving Down a Corridor

Our approach to autonomous driving in a corridor in-
volves combining information from ceiling lights and en-
tropy, as described in the following subsections.

2.1. Centering using corridor ceiling lights

The image is divided into four adjoining triangles de-
fined by the two diagonals of the image. Assuming that
ceiling lights reside in the top triangle, we use the mean
horizontal location of the intensities above a threshold to
determine whether the robot is traveling in the center of the
corridor. By servoing on this location, the ability to navi-
gate a long corridor with stability is achieved, even without
any additional information from odometry or other sensors.
This approach is not only simpler, but also more powerful
and more general, than previous approaches that analyze
the shape of lights. For example, Figure 1 shows a variety



Figure 1. Different ceiling lights and their mean locations (red
dots) detected by our algorithm. Notice that there is no restriction
on the shape or location of lights; in the right image the lights are
on the sides of the corridor pointing toward the reflective ceiling.

of lights that are successfully detected using this method.
Note that ceiling lights provide an added advantage over
vanishing points because they are affected by translation,
thus enabling the robot to remain in the center of the corri-
dor while also aligning its orientation with the walls.

2.2. Distinguishing the corridor by scalar entropy

The entropy of an image is a scalar representing the sta-
tistical measure of randomness that can be used to charac-
terize its texture:

H(K) =
∑

p∈K

−plog p, (1)

wherep is the count value for each bin in the histogramK

of the imageI (256 bins for a graylevel image). It is also
a measure of the information content in an image. When
the robot approaches a planar surface, like a blank wall or
the surface of an untextured or structured object, the en-
tropy drops; this implies that the camera is facing a pla-
nar obstacle immediately in front of it. In richly textured
images, time-to-collision (TTC) [1] or central image diver-
gence threshold [11] can be used to determine the position
of a frontal obstacle. But in an environment devoid of tex-
ture and consisting of uniform color, these methods will fail.
Using entropy (in addition to the existing methods), there-
fore, is a promising way to react to a situation where the
image does not provide enough information for navigation.
Other researchers have used entropy for determining the di-
rection of navigation and for global visual localization using
omnidirectional images [6, 16].

Entropy is used in several ways. While driving, the en-
tropy values on the two sides of the image are compared,
and if either of the values drops sharply, the robot turns
away from the side with the lower entropy. In the same
manner, while turning at the end of a corridor, the robot
continues turning as long as either side has low entropy and
the overall entropy is below a threshold. That a low en-
tropy value indicates a nearby wall is illustrated in Figure2,
where sharp drops in entropy correspond to images where
the robot is facing a blank wall.

Entropy can also be used to find corridors. Figure 3
shows a plot of entropy values as the robot turns on the spot
facing three branches of a T-junction. The entropy is high

Figure 2. Comparison of image entropy, absolute image standard
deviation, and central optical flow of the image, all measured while
the robot traveled in a building. The three drops in entropy corre-
spond to three turns, when the robot faced the walls. Notice that
the entropy values are more easily distinguished (and less noisy)
than those of the other measures.

when the robot is aligned with the corridor, and it drops
sharply when the robot faces the wall. Therefore, entropy
can be used to detect the presence of an open corridor for
navigation when other metrics fail, whether in textured or
untextured environments.

2.3. Homing mode

When the robot nears the end of a corridor, the lights
disappear from the camera’s field of view and the overall
entropy drops. When either of these occurs, the robot au-
tomatically captures the current image and stores it as the
‘home’ image. Keeping that image in view, the robot nav-
igates toward it usinghoming [30]: The current image is
compared with the home image after shifting left and right
by a maximum disparity of one pixel. The result that yields
the lowest sum of absolute difference (SAD) indicates the
robot’s direction of motion. This keeps the robot in the cen-
ter of the corridor even when the lights are not visible.

3. Detecting the End of the Corridor

The end of the corridor is determined by combining three
measures: entropy (just described), relative entropy, andthe
time-to-collision, in order to navigate in different indoor en-
vironments with different levels of texture/information and
lighting.

3.1. Relative entropy

If we consider two discrete distributions with probability
functionspk andqk, then the Kullback-Leibler distance of



−200 −150 −100 −50 0 50 100 150 200
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

theta (degrees)

E
nt

ro
py

Figure 3. Entropy captured as the robot turned in place at the T-
junction of two corridors. Entropy is high when the robot faces the
length of a corridor and drops sharply on either side, so the three
peaks indicate the three corridor directions. Maintaining high en-
tropy allows the robot to avoid the specular reflections of the walls.

p with respect toq is given by

D (p, q) =
∑

k

pk log

(

pk

qk

)

, (2)

which is a measure of the distance between two distribu-
tions. In our application,pk andqk represent the intensity
histograms of two images, so that the relative entropyD

measures how different one image is from the other. One
drawback of the Kullback-Leibler measure is that it is not a
true distance, becauseD(p, q) 6= D(q, p). For a symmetric
measure, the Jeffrey divergence is used:

J (p, q) =
∑

k

(

pk log

(

pk

qk

)

+ qk log

(

qk

pk

))

. (3)

Jeffrey divergence has been used previously for vision
based robot localization for comparing color histograms in
typical SLAM algorithms and has been shown to be a good
metric for histogram comparison [37].

As the robot moves toward the end of the corridor in
the homing phase described in the previous section, every
image is compared with the home image using Jeffrey di-
vergence. This measures the amount of relative informa-
tion between the two images, i.e., how different one image
is from the other. The divergence value increases steadily
while the home image is in view, then the value increases
rapidly as the robot approaches the end of the corridor. This
rapid change signifies that the current image is no longer
recognizable as ‘home’ (see Figures 4 and 5).
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Figure 4. Time-to-collision and Jeffrey divergence for an image se-
quence in which the robot approaches a pair of doors. TOP: Sam-
ple images from the sequence. BOTTOM: Plot of the TTC (left)
and Jeffrey divergence (right) versus time. The former decreases,
while the latter increases; combining the two enables robust detec-
tion of the end of a corridor.

3.2. Time-to-collision detector

Time-to-collision (TTC) is defined as the time taken by
the center of projection of a camera to reach the surface be-
ing viewed, if the relative velocity remains constant [17].
Horn et al. [17] have recently described a novel method
to determine the time-to-collision using image brightness
derivatives (temporal and spatial) without any calibration or
tracking. This method computes the time to contact with
just two frames of a sequence. Although each individual
estimate is noisy, a filtered version of the output yields a
reliable estimate as the camera approaches the object. Of
specific importance is the case of a planar surface for which
the algorithm is a simple one and can be applied to the case
of a robot approaching the end of a corridor. For the case
of translation motion along the optical axis towards a plane
perpendicular to the optical axis, the TTC is given by

TTC =
−

∑

(G (x, y))2
∑

G (x, y) Et

, (4)

whereG (x, y) = xEx +yEy, Ex andEy are spatial image
brightness derivatives,Et is the temporal derivative, and the
sum is over the desired planar object (in some cases the en-
tire image) [17]. Figures 4 and 5 show that the TTC in-
creases as the robot approaches the end of a corridor. By
combining Jeffrey divergence and TTC, the end of a corri-
dor can be detected reliably.

3.3. Turning at the end of a corridor

The robot displays tropism at the end of each corridor,
making an autonomous decision to turn in order to find the
new adjacent corridor. While turning, the robot searches
for ceiling lights and high overall entropy. The robot enters
a rotational search mode until it finds another source light
in the ceiling. If it sees the light, it corrects its course and
follows the light into the new corridor following the same
procedure as above. However, if it does not see any lights
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Figure 5. Time-to-collision and Jeffrey divergence for an image
sequence in a textured environment in which the robot approaches
a brick wall with a ventilator. TOP: Sample images from the se-
quence. BOTTOM: Plot of the TTC (left) and Jeffrey divergence
(right) versus time. It can be seen that the metrics describe the
approaching end successfully in both textured (‘information rich’)
and relatively textureless environments.

on all sides but still senses the presence of a corridor indi-
cated by an entropy value greater than a threshold (see Fig-
ure 3), then it navigates in that direction using ‘homing’ as
described above and the process continues. If lights come
into view again, the robot follows the light.

4. Autonomous Mapping

The same metrics that were used for navigation can
be used to determinedistinctive/salientlandmarks for map
building in an incremental process. Boadaet al. [5] have
implemented a popular framework for Voronoi-based maps
and localization. The Voronoi-based maps are roadmap
methods and are preferred for corridor mapping because
of their accessibility, connectivity, and departability[10]
and can be constructed incrementally by the robot. In this
approach, the graph consists of the links which represent
the obstacle-free path followed by the robot and the nodes
which represent thedistinctive/salientplaces along the path.

4.1. Joint Probability Distribution of Distinct Land-
mark Measures

For landmark detection only one-sixth of the image is
considered on either side, because this narrow region con-
tains landmarks as seen along a corridor. This further im-
plies that only 33% of the32 × 24 image is used. We de-
termine distinct landmarks along the hallway by using the
measures of image scalar entropy and relative entropy be-
tween two subsequent images. LetX represent a normal-
ized random variable representing the entropy of the gradi-
ent magnitude ofith image seen along the hallway, and let
Y represent the Jeffrey divergence between theith and the
(i − 1)

th image gradients. Then the Joint Probability Den-
sity (JPD) of the two variables represents thedistinctiveness

measure of the image:

Pxy (X,Y ) =
1

2πσxσy

exp

[

−

(

X2

2σ2
x

+
Y 2

2σ2
y

)]

. (5)

This can be described as a measure of how information-rich
and unique an image is. A landmark is therefore defined as
an image that hasinteresting, recognizableinformation that
is distinct from the previous image. It is assumed that two
consecutive frames in the sequence do not have two differ-
ent potential landmarks. Considering the speed of the robot
and the capture rate of the camera, this is highly unlikely.

Because the relative entropy between two images is inde-
pendent of the absolute entropy of either one,X andY can
be considered as independent variables. Regional maxima
on the JPD give locations/images that represent landmarks.
It can be seen from the results in Figure 9 that even in im-
ages of low resolution (where traditional point features are
hard to detect/track) the simple measures indicated above
give a clear indication of a landmark. The algorithm does
not represent each landmark uniquely (which would be dif-
ficult in a typical indoor environment consisting of corridors
with identical doors) but instead represents locally the pres-
ence of a landmark.

5. Experimental Results

The algorithm was tested on an ActivMedia Pioneer
P3AT mobile robot platform equipped with a forward-
facing Logitech Quickcam Pro4000 webcam in three floors
of a building on our campus. For historical reasons, the
three floors do not share the same appearance in terms of the
color of the walls, the placement of the lights, the locations
of the doors, the locations of nearby corridors, and so on.
In particular, the corridors have entirely different lighting
conditions, ranging from a single row of fluorescent lamps
to sodium vapor lamps to lights on either sides of the corri-
dor ceiling (see Figure 1). The texture (information content)
in the corridors is also different, with the basement having
textureless walls and floors of uniform color (see Figure 6).
Only the grayscale information from the32×24 downsam-
pled images from the camera was used.

On all three floors the robot autonomously navigated the
corridors, turning at the end of each corridor using the al-
gorithm described. At the end of a corridor, the direction
of turning was chosen at random if both options were avail-
able; otherwise the robot turned in the open direction. Fig-
ures 7, 8, and 9 show the path taken by the robot on two of
the floors, overlaid on a hand-constructed map of the envi-
ronment to provide context for interpreting the results. On
the first floor the robot turned left twice at the end of each
corridor; in the basement the robot turned right, then turned
left (arbitrarily), navigated to the end of the corridor, then
turned around 180 degrees and headed back down the last



Figure 6. Example experimental sites shown in high resolution to
reveal the difference in texture and lighting.
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Figure 7. Automatically computed Voronoi-based map with nodes
representing the approximate distinctive landmarks on the third
floor of the building. It can be seen that the landmarks have been
verified by the returning robot in the top wing of the corridor.

corridor in the opposite direction. In all cases the robot re-
mained in the center of the corridor, avoiding collision with
the walls or obstacles.

Since the robot’s odometry is prone to drift over large
distances, these plots include an effective method to reduce
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Figure 8. Automatically generated Voronoi map of the first floor
of the building.
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Figure 9. Automatically generated Voronoi map of the basement
of the building.

the drift using the motor commands given by the vision
module. Inspired by the work of Crowley [12], which com-
bines the measured position and the expected position based
on motor commands using a Kalman filter and a retroactive
odometric correction using sensor fusion [23], we use the
motor commands issued by the vision module to incremen-
tally correct the odometry. Though drift errors persist to a
small degree, this incremental method is sufficient for the
general purpose of this initiative.

Figures 7, 8, and 9 also show the generated Voronoi-
based map overlaid. Most of the important landmarks have
been captured. The nodes represented in the Figure 7 rep-
resent distinctive regions along the corridor of the third
floor. This map is a Voronoi-based topological representa-
tion built autonomously. With odometry combined it can be
described as a topo-geometric map similar to the description
in [5] as it combines real distances with the skeleton. The



Location NL ND F M

Floor 1 12,11 10,10 2,0 2,1
Floor 3 12,13 14,13 4,3 2,3
Basement 15,14 15,13 1,2 1,1

Table 1. Quantitative landmark detection results. From left to
right: the number of landmarksNL, the total number detected by
the algorithmND, the number of false landmarks detectedF , and
the number of landmarks missed by the algorithmM . Each cell
in the table contains the number for left and right, separated by a
comma.

Figure 10. Landmark images containing a landmark on the left side
of the image.

Figure 11. Landmark images containing a landmark on the right
side of the image.

landmarks seen to the left of the robot are represented by a
square, and the landmarks seen on the right are represented
by an asterisk. At corridor junctions it can be seen that left
and right landmarks overlap. This is because the robot turns
at junctions to search for lights. Furthermore, the multiple
doors at junctions are recognized as one landmark because
they are all captured during the rotation of the robot at junc-
tions. It is interesting to observe the top wing of the corri-
dor in Figure 7. The left and right landmarks validate each
other because the robot returns along the same path in the
opposite direction. Some example images representing the
detected landmark positions are shown in Figures 10 and
11.

Table 1 shows the analysis of the results. The landmarks
are counted in the order of the robot’s navigation path, while
the returning landmarks are not counted. Also note that in
some cases two entities that are immediately next to each
other are detected as one distinct region/landmark (e.g., a
door with an adjoining shelf on the wall). It can be seen
that in the worst case at least 70-80 % of the landmarks are
detected successfully.

The algorithm is efficient, capable of running at over
1000 frames per second. Therefore with a standard 30 Hz
camera, the algorithm consumes approximately 3% of the
CPU, thus freeing the processor for other concurrent tasks.
In our experiments, the robot was run indoors at a moderate
speed of 0.4 m/s.

6. Conclusion and Future Work

The navigational behavior of a mobile robot is modeled
by a set of paradigms that work in conjunction to correct its
path in an indoor environment based on different metrics.
Special emphasis is placed on using low resolution images
for computational efficiency and metrics that capture infor-
mation content and variety that cannot be represented using
traditional point features and methods. The resultant algo-
rithm enables end-to-end navigation in indoor environments
with self-directed decision making at corridor ends, without
the use of any prior information or map. The system forms
the basis of an autonomous mapping system that is built
using the same low resolution metrics to present a Voronoi-
based topo-geometric map that can be used for robot local-
ization.

Future work involves the development of a layered ap-
proach where higher resolution image processing will aug-
ment the system to handle complex requirements like land-
mark matching. The Joint Probability Distribution can be
made more robust using multiple temporal derivatives and
smoothing. This autonomous mapping can seamlessly in-
tegrate with existing topological localization modules that
use Jeffrey divergence to match landmarks.
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