
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008 731

Real-Time Motion Segmentation of Sparse
Feature Points at Any Speed

Shrinivas J. Pundlik and Stanley T. Birchfield, Senior Member, IEEE

Abstract—We present a real-time incremental approach to mo-
tion segmentation operating on sparse feature points. In contrast
to previous work, the algorithm allows for a variable number of
image frames to affect the segmentation process, thus enabling
an arbitrary number of objects traveling at different relative
speeds to be detected. Feature points are detected and tracked
throughout an image sequence, and the features are grouped using
a spatially constrained expectation–maximization (EM) algorithm
that models the interactions between neighboring features using
the Markov assumption. The primary parameter used by the
algorithm is the amount of evidence that must accumulate before
features are grouped. A statistical goodness-of-fit test monitors
the change in the motion parameters of a group over time in
order to automatically update the reference frame. Experimental
results on a number of challenging image sequences demonstrate
the effectiveness and computational efficiency of the technique.

Index Terms—Expectation–maximization (EM), feature track-
ing, motion segmentation.

I. INTRODUCTION

COMMON fate, also known as common motion, is a pow-
erful cue for image understanding [13], [32]. According

to Gestalt psychology, the human visual system groups pixels
that move in the same direction in order to focus attention on
perceptually salient regions of the scene. As a result, the ability
to segment images based upon pixel motion is important for
automated image analysis impacting a number of important
applications, including object detection [40], tracking [30],
surveillance [16], robotics [20], image and video compression
[2], scene reconstruction [12], and video matting [45].

Traditional motion segmentation algorithms limit themselves
to using the information between times t and t + K, where K
is a constant parameter, in order to determine the number and
composition of the groups [7], [8], [18], [32], [34], [42], [46].
Ignoring the fact that motion is inherently a differential concept,
such an approach is similar to estimating the derivative of a
function using finite differences with a fixed window size: Too
small of a window increases susceptibility to noise, whereas too
large of a window ignores important details.

The drawback of using a fixed number of image frames is
shown in Fig. 1(a) with two objects moving at different speeds,
∆x1/∆t1 and ∆x2/∆t2, respectively, relative to a static back-
ground, where ∆x1 = ∆x2. Because the amount of evidence

Manuscript received December 16, 2006; revised August 22, 2007. This
paper was recommended by Associate Editor I. Bloch.

The authors are with the Department of Electrical and Computer Engineer-
ing, Clemson University, Clemson, SC 29634-5124 USA.

Digital Object Identifier 10.1109/TSMCB.2008.919229

Fig. 1. Fast object (object 1) and a slow object (object 2) move against a
static background. (a) If the threshold τ is dependent upon velocity, then the
slowly moving object is never detected because ∆x2/∆t2 < τ . (b) In contrast,
a fixed reference frame enables both objects to be detected independently of
their speed, as soon as enough image evidence accumulates (time t1 for object
1 and t2 for object 2).

in the block of frames is dependent upon the velocity of the
object relative to the background, the slowly moving object is
never detected (i.e., separated from the background) because
∆x2/∆t2 < τ , where τ = ∆x/∆t is a threshold indicating
the minimum amount of relative motion between two objects
required to separate them. The threshold must be set above
the noise level (of the motion estimator) in order to avoid
oversegmentation, but if it is set too high, then objects moving
slowly relative to each other will not be distinguished. The
solution to this problem is to use a fixed reference frame with
the threshold τ = ∆x indicating the amount of relative dis-
placement needed between two objects, as shown in Fig. 1(b).
As additional images become available over time, evidence
for the motion of an object is allowed to accumulate so that
objects are detected regardless of their speed once their overall
displacement exceeds the threshold, i.e., ∆xi > τ .

Of course, in practice, the reference frame must be updated
eventually due to the divergence over time of the actual pixel
motion from the low-order model of the group motion. Thus,
a crucial issue in designing a motion segmentation system that
operates on variable speeds is to adaptively update the reference
frame. To do so, the system must be able to distinguish between
two common cases. First, the pixels in a region may not be
moving coherently due to the presence of multiple objects
occupying the region, in which case the group should be split.
Second, the motion divergence may be due to unmodeled
effects in the underlying motion model, in which case the
reference frame should be updated.

In this paper, we present an algorithm for segmenting sparse
feature points in long image sequences by processing im-
ages sequentially [28]. We introduce a spatially constrained
expectation–maximization (EM) framework which replaces the
traditional assumption of conditional independence between
feature labels with a Markov assumption between them. A

1083-4419/$25.00 © 2008 IEEE

732 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

region-growing approach incorporating a novel consistency
check is used to efficiently initialize the EM procedure in a
greedy manner [41], which maintains the feature groups over
time by automatically creating new groups from ungrouped fea-
tures, assimilating ungrouped features into existing groups, and
splitting groups as needed. The chi-square (χ2) test is used to
determine whether the motions of the features in each group can
be explained by the motion models and whether the reference
frame needs to be updated. By using a variable number of image
frames in performing the segmentation, results are therefore
achieved with any object speed.

The algorithm performs in real time on a standard computer,
handles an arbitrary number of groups, and is demonstrated on
several challenging sequences involving independently moving
objects, occlusion, and parallax effects. The number of groups
is determined automatically and dynamically as objects move
relative to one another and as they enter and leave the scene.
The primary parameter of the algorithm is a threshold that
captures the amount of evidence (in terms of motion variation)
needed to decide which features belong to different groups. We
present results of the algorithm on a variety of sequences to
demonstrate the effectiveness of the approach.

II. PREVIOUS WORK

Motion segmentation is a classic problem in computer vision
that has been explored by various researchers over the years.
One traditional approach has been to assign the pixels to layers
and to compute a parametric motion for each layer, following
Wang and Adelson [1], [42], [43]. This approach determines
a dense segmentation of the video sequence by minimizing
an energy functional, typically using either EM or graph cuts.
In a series of papers, Jojic et al. [6], [18], [19] demonstrate
algorithms that are capable of segmenting sequences and repre-
senting those sequences using example patches. In other recent
work, Smith et al. [34] present a technique for dense motion
segmentation that applies EM to the edges in a sequence. Xiao
and Shah [46] combine a general occlusion constraint, graph
cuts, and alpha matting to perform accurate dense segmenta-
tion. Kumar et al. [23] combine loopy belief propagation with
graph cuts to densely segment short video sequences. Cremers
and Soatto [8] minimize a continuous energy functional over
a spatiotemporal volume to perform two-frame segmentation,
a technique which is extended by Brox et al. [5]. Spatiotem-
poral coupling has been enforced using graph cuts and hidden
layers representing occlusion [11] and by dynamic Bayesian
networks [35].

An alternate approach is to formulate the problem as
one of multibody factorization, which is solved using sub-
space constraints on a measurement matrix computed over
a fixed number of frames, based upon the early work of
Costeira and Kanade [7]. Ke and Kanade [21] extended this
work by presenting a low-dimensional robust linear subspace
approach to exploit the global spatial–temporal constraints.
Zelnik-Manor et al. [48] expand upon traditional measures
of motion consistency by taking into account the temporal
consistency of behaviors across multiple frames in the video
sequence, which can then be applied to 2-D, 3-D, and some

nonrigid motions. Vidal et al. [38], [39] show that multiple
motions can, in theory, be recovered and segmented simul-
taneously using the multibody epipolar constraint, although
segmentation of more than three bodies has proved to be
problematic in practice. In recent work, Yan and Pollefeys [47]
have examined the effects of articulated and degenerate motion
upon the motion matrix, to which recursive spectral clustering
is applied to segment relatively short video sequences. In other
recent work, Gruber and Weiss [15] extend the standard multi-
body factorization approach by incorporating spatial coherence.

The problem has been approached from other points of view
as well. Various researchers have utilized the assumption that
the dominant motion is that of the background in order to
detect independently moving objects [17], [27], [30]. Other
researchers have explored the connection between bottom-
up and top-down processing, noting that some top-down evi-
dence will be needed for segmentation algorithms to produce
the results expected by human evaluators [22], [25], [36].
Wills et al. [44] combine sparse feature correspondence with
layer assignments to compute dense segmentation when objects
undergo large interframe motion, followed by more recent
work in which the time linearity of the homographies obtained
under the assumption of constant translation is exploited in
order to segment periodic motions from nonperiodic back-
grounds [24]. Shi and Malik [31], [32] cluster pixels based
on their motion profiles using eigenvectors, a technique that
has proved successful for monocular cues but which does not
take occlusion information into account. Rothganger et al. [29]
apply the rank constraint to feature correspondences in order to
divide the sequence into locally coherent 3-D regions. In two
pieces of recent interesting work, Sivic et al. [33] use object-
level grouping of affine patches in a video shot to develop a
system for video retrieval, and Criminisi et al. [9] present a
real-time foreground/background segmentation technique with
sufficient accuracy for compositing the foreground onto novel
backgrounds.

Surveying this literature, several common themes emerge.
First, they generally process the images in batch, operating
either on two images at a time or on a spatiotemporal volume
containing a fixed number of images. In the case of multiple
frames, the motion of the object is often considered to be
constant or slowly changing throughout the sequence of frames
under consideration to simplify the integration of information
over time. Second, the techniques are usually limited to a small
time window in which the motion of all of the objects is
expected to be well behaved. Additionally, it is generally the
case that the focus of the research is not upon computationally
efficient algorithms, leading, in some cases, to techniques that
require orders of magnitude more than what is available in real-
time applications. Finally, some of the techniques are limited
to a small number of objects (two or three) due to either
the computational burden or more fundamental aspects of the
algorithm. To date, no system has been produced that processes
frames in real time, can handle an arbitrary number of objects
undergoing complex motions, and operates on arbitrarily long
sequences.

Note that an alternate spatially constrained approach to EM
segmentation is presented in [10], in which the mixing weights

PUNDLIK AND BIRCHFIELD: REAL-TIME MOTION SEGMENTATION 733

of neighboring pixels are averaged in each iteration, for the
purpose of non-real-time segmentation of single images. In con-
trast, our approach enforces spatial continuity by growing from
a region centroid for the purpose of real-time segmentation of
video sequences.

III. FORMULATION

Let f (i), i = 1, . . . , n be the sparse features tracked in a
video sequence, and let f

(i)
t represent the (x, y) coordinates of

the ith feature in image frame t. Let x(i) = 〈f (i)
1 , . . . , f

(i)
T 〉 be

the trajectory of the ith feature, where T is the maximum frame
number, and let X = 〈x(1), . . . , x(n)〉 be all the trajectories
collectively.

The trajectories of neighboring features typically exhibit
a strong correlation because they follow the motion of the
same surface in the world. Let Θ = 〈θ1, . . . , θk〉 be the motion
models of the k components from which the feature trajectories
arise. Our goal is to find the maximum-likelihood explanation
of the data

Θ∗ = arg max
Θ

P (X|Θ). (1)

Assuming that the different trajectories are independent given
Θ, we have

P (X|Θ) =
n∏

i=1

k∑
j=1

P
(
x(i)|c(i)

j ,Θ
)

P
(
c
(i)
j |Θ

)
(2)

where c
(i)
j is a binary variable that indicates whether feature

f (i) belongs to component j.
Let φ(x(i); θj) = P (x(i)|c(i)

j ,Θ) measure how well the tra-

jectory x(i) fits the jth model, and let π
(i)
j = P (c(i)

j |Θ) be the

weight indicating the probability that feature f (i) belongs to
component j given Θ; thus,

∑k
j=1 π

(i)
j = 1. Then, by convert-

ing to a log likelihood, we can rewrite the expression as

Θ∗ = arg max
Θ

n∑
i=1

log gk

(
x(i)

)
(3)

where

gk

(
x(i)

)
=

k∑
j=1

π
(i)
j φ

(
x(i); θj

)
. (4)

Learning the mixture involves estimating the weights π
(i)
j ’s and

the parameters θj’s. To do this, we use a variation of the greedy
EM algorithm [41], which incrementally adds components to
determine k automatically. Because we process the sequence
causally, in the following discussion, T should be interpreted
as the maximum frame number encountered so far.

IV. GROUPING FEATURES USING TWO FRAMES

As with existing motion segmentation algorithms, the core of
our approach involves grouping features between a pair of (not

necessarily consecutive) image frames. In this paper, we use an
affine motion model, so that

φ(x(i); θj) =
1√

2πσ2
f

exp

{
−‖Ajf

(i)
t − f

(i)
rj ‖2

2σ2
f

}
(5)

where Aj is the 3 × 3 matrix of affine parameters (homoge-
neous coordinates are used, with a slight abuse of notation), rj

specifies the reference image frame of the jth group, and σ2
f is

the variance of the Gaussian distribution. The parameters of a
group are θj = 〈Aj , rj , µj〉, where µj is the centroid.

Notice that (2) assumes that the binary labels of the fea-
tures are independent given Θ, i.e., P (c(1)

j , . . . , c
(n)
j |Θ) =∏n

i=1 P (c(i)
j |Θ). A more realistic formulation would take the

spatial continuity of regions into account. For simplicity, as-
sume that the features are ordered in a linear chain starting from
the feature that is closest to the centroid of the group. Then, the
requirement of spatial continuity yields a Markov chain

P
(
c
(1)
j , . . . , c

(n)
j |Θ

)
=

n∏
i=1

P
(
c
(i)
j |c(i−1)

j ,Θ
)

=
n∏

i=1

P
(
c
(i)
j |Θ

)
c
(i−1)
j (6)

where the last equality arises from c
(i−1)
j being a binary vari-

able. Extending this result to 2-D, let ε
(i)
j be a binary indicator

variable whose value is one if and only if there exists a path
(according to a predefined neighborhood) from f (i) to the
feature that is closest to the centroid such that c

(�)
j = 1 for all

features f (�)’s along the path. Because we do not have access
to the actual labels, we instead use an estimate ε̂

(i)
j , which is

set to one if and only if P (c(�)
j |Θ) > pτ for all the features on

the path.
This analysis leads to a spatially constrained EM algorithm.

For each component j, log-likelihood maximization is per-
formed using the following iterative update equations:

π
(i)
j ←

π
(i)
j φ

(
x(i); θj

)
ε̂
(i)
j

k∑
j=1

π
(i)
j φ

(
x(i); θj

)
ε̂
(i)
j

(7)

ε̂
(i)
j ←

{
min

�
π

(�)
j

}
> pτ (8)

µj ←

n∑
i=1

π
(i)
j f (i)

∑
π

(i)
j

(9)

Aj ← arg min
a

‖W (Fta − Frj
)‖2 (10)

where W is a diagonal weighting matrix with elements Wii =
π

(i)
j , Ft is a matrix containing the features at frame t, and a is

a vectorization of the affine matrix.
Although EM is guaranteed to converge to a local minimum,

it requires a good initial guess. We adopt a “winner-take-
all” strategy [26], shown in the algorithm GroupFeatures,

734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

Fig. 2. Formation of a feature group by region growing, using the motion between two frames of a sequence. (Left) The initial group with the seed point f (bull’s
eye of concentric black, white, and black circles) and its immediately neighboring ungrouped features Nu(f) in the Delaunay triangulation. (Center) The group
after the first iteration when S is empty. (Right) The final feature group after GroupFeatures has converged on a solution. Repeated iterations do not produce
any changes in the feature group.

to provide this starting point. Groups are added one at a time
by region growing from a random ungrouped feature, and the
region growing is performed iteratively for each group after
adjusting the centroid using all the features gathered in the
previous iteration. The function N (i; t) returns the indices of
all the features that are immediate neighbors of feature f (i) in
the Delaunay triangulation at frame t, and the binary vector b
keeps track of which features have already been considered for
grouping. The output of this procedure is the number of groups,
along with the binary weights indicating the membership of the
features in the groups.

GroupFeatures

Input: Features f (i), i = 1, . . . , n and frames t and r

Output: k (number of groups), and π
(i)
j , j = 1, . . . , k

1) Set k ← 0
2) Set π

(i)
k+1 ← 0, i = 1, . . . , n

3) Set b(i) ← 0, i = 1, . . . , n
4) Repeat until a random feature cannot be found

a) Select a random f (�) such that b(�) = 0
b) Set π

(i)
k+1 ← 1, ∀i ∈ {�,N (�; t)}

c) Set rk+1 ← r, and compute Ak+1 using (10)
d) Repeat until µk+1 does not change

i) Set µk+1 using (9)
ii) Set π

(i)
k+1 ← 0, ∀i �= �,

where f (�) is the feature closest to µk+1

iii) Repeat as long as π
(i)
k+1 changes for some i

(a) For each � such that π
(�)
k+1 = 1,

if i ∈ N (�; t) and π
(i)
k+1 = 0

and φ(x(i); θj) > pτ , then set π
(i)
k+1 ← 1

(b) Compute Ak+1 using (10)
e) Set b(i) ← max{b(i), π

(i)
k+1}, i = 1, . . . , n

f) If
∑n

i=1
π

(i)
k+1 ≥ nmin, then k ← k + 1

Fig. 2 shows the growing procedure for a single group.
When no more features can be added to the group, the group
is reset to the feature that is closest to the centroid of the
group, and the process begins again. Convergence is usually
obtained within two or three iterations. Once the first group
has been found, the procedure is then repeated using another
random ungrouped feature as the new seed point. Note that the
algorithm automatically determines the number of groups using
the single parameter pτ , along with the minimum size nmin of
a group.

Fig. 3. Formation of consistent feature groups using the consistency matrix.
The first run of GroupFeatures groups a, b, and d together while placing c in
a separate group. The second run, using a different random seed point, groups a
and c together and b and d together. Shown on the right are the three consistent
groups: b and d together, a by itself, and c by itself.

If the motion models of neighboring groups are similar,
then the assignment of the features will depend heavily upon
the randomly chosen seed points. To solve this problem, we
introduce a seed-point consistency check which is reminis-
cent of the left–right consistency check of stereo matching
[14]. The grouping algorithm GroupFeatures is run mul-
tiple times, starting from different random seed points. A
consistency matrix is maintained in which ci� is the number
of results in which f (i) and f (�) belong to the same group.
A set of features is said to form a consistent group if the
features always belong to the same group as each other, i.e.,
ci� = Ns for all features in the set, where Ns is the num-
ber of times that GroupFeatures is run. The collection of
consistent groups larger than the minimum size nmin is re-
tained, whereas the remaining features receive zero weight
for all groups. This GroupConsistentFeatures algorithm
is shown in Fig. 3 for a simple example. The dependency of
GroupFeatures on the random seed point, along with the
results of GroupConsistentFeatures on an example pair of
images, is shown in Fig. 4.

GroupConsistentFeatures

Input: Features f (i), i = 1, . . . , n and frames t and r

Output: k (number of groups), and π
(i)
j , j = 1, . . . , k

1) Set ci� ← 0 for every pair of features f (i) and f (�)

2) For i ← 1 to Ns

a) Run GroupFeatures

PUNDLIK AND BIRCHFIELD: REAL-TIME MOTION SEGMENTATION 735

Fig. 4. (Right) Consistent groups obtained by applying the GroupConsistentFeatures algorithm to the results of running the algorithm GroupFeatures
with (left three images) three different seed points. The bull’s eye indicates the first seed point of each run. Notice that although the original groups are highly
sensitive to the seed point, the consistent groups effectively segment the four regions of the image: (Black circles) statue, (white squares) wall, (black +’s) grass,
and (white triangles) trees.

b) For each pair of features f (i) and f (�), increment
ci� if f (i) and f (�) belong to the same group

3) Set k ← 0
4) Repeat until all features have been considered

a) Set π
(i)
k+1 ← 0, i = 1, . . . , n

b) Gather a maximal set F of consistent features such
that ci� = Ns for all pairs of features in the set

c) If |F| > nmin, then
i) Set π

(i)
k+1 ← 1, ∀i such that f (i) ∈ F

ii) Set k ← k + 1

The algorithm GroupConsistentFeatures is used to ini-
tialize the number k of groups, the centroids µj’s and affine

parameters Aj’s of the groups, and the weights π
(i)
j ’s of the

features. After initialization, the spatially constrained EM al-
gorithm described in (7)–(10) is then applied. The interdepen-
dency between ε̂

(i)
j and π

(i)
j requires care because any weight

set to zero by (8) will remain zero due to its reuse in (7).
Recognizing that the prior π

(i)
j in (7) does not affect the shape

of the distribution represented by the weights at the stationary
point, we implement the algorithm by resetting to a uniform
prior in each iteration. In other words, for each group j, we
perform the following steps for all i = 1, . . . , n.

1) Set π
(i)
j ← 1.

2) Set π
(i)
j ← π

(i)
j φ(x(i); θj).

3) Set ε̂
(i)
j using (8) by region growing from µj .

4) Set π
(i)
j ← π

(i)
j ε̂

(i)
j .

After all the groups have been considered, the weights are
normalized according to π

(i)
j ← π

(i)
j /

∑k
j=1 π

(i)
j . Together, this

procedure constitutes the E-step. The M-step involves the sim-
ple application of (9) and (10). Concerning convergence, in
our experience, the procedure settles onto a solution in few
iterations, although proof of convergence is left for future work.

V. MAINTAINING FEATURE GROUPS OVER TIME

The grouping procedure of the previous section operates
on exactly two (not necessarily consecutive) image frames,
assuming a fixed reference frame rj for each group. As such,
it exhibits the same limitations of existing algorithms. If the
time difference between the two frames being compared is
short, then slowly moving objects will not be detected. On
the other hand, if the time difference is large, then the affine

Fig. 5. Splitting an existing feature group. If the χ2 test fails to uphold
the assumption of coherent motion within the group, then the algorithm
GroupConsistentFeatures is applied to the features in the group to facilitate
regrouping. This results either in multiple groups or the discarding of outlier
features (feature number 6).

motion assumption is likely to fail, and fewer features will be
successfully tracked between the two frames. In this section, we
embed the two-frame algorithm within a procedure for updating
the groups over time in an incremental fashion so that the
objects can be detected regardless of their speed. Our goal is to
have a method that adapts the time difference and captures the
dynamic behavior of features and objects as observed in long
real-world image sequences.

The incremental procedure involves three steps. First, the ini-
tialization algorithm GroupConsistentFeatures is applied
to all the features that have not yet been grouped in order to add
new groups to the existing ones. Second, ungrouped features are
assimilated into existing groups using the spatially constrained
EM procedure of the previous section to update their weights.
Different groups may have different reference frames, so any
new feature whose start frame (the frame in which the feature
was first detected) is more recent than a reference frame is not
considered for grouping.

The last of the three steps is by far the most difficult. The
inescapable question at this point is as follows: How can one
determine whether a group exhibits coherent motion in such a
way that the result is achieved for any object speed? In other
words, the coherence of motion is determined by comparing
the feature coordinates in the current frame with those in the
reference frame. If the reference frame is never updated, then
the number of features successfully tracked between the two
frames will decrease (eventually to zero), and the underlying
motion model will become a poor fit to the real noisy data
(eventually causing incoherent motion even in a single object).

736 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

Fig. 6. Results of the algorithm on three image sequences: (top) free-throw, (middle) car map, and (bottom) mobile calendar. (Left) The original image, (middle)
the feature groups overlaid on the image, and (right) the feature groups detected on another image later in the sequence. Features belonging to different groups are
indicated by markers of different shapes, and solid lines outline the convex hull of each group. The top row shows frames 9 and 14, the middle shows frames 11
and 20, and the bottom shows frames 14 and 69.

On the other hand, if the reference frame is updated at a constant
rate, as is commonly done, then the differential nature of motion
is being ignored, and the result will depend upon object speed.

EM cannot solve this dilemma. Maximizing (3) with respect
to rj , j = 1, . . . , k would yield the trivial solution of setting
the reference frame to the current frame, just as maximizing the
equation with respect to k would yield the trivial solution of
producing exactly one group per feature. Just as EM requires
k to be fixed, so it also requires rj to be fixed for all j’s. As a
result, we are forced to turn to an ad hoc technique, in much the
same way that others have resorted to suboptimal methods for
determining the number of groups [37], [41].

To solve the dilemma, we then turn to the χ2 test. This
nonparametric statistical test compares observed data with an
expected probability distribution in order to decide whether to
reject the null hypothesis H0 that the data were drawn from the
distribution. The test is asymmetric: Although a large χ2 value
indicates that H0 should be rejected, a small value says nothing
about whether H0 should be accepted, but only that insufficient
evidence exists to reject it. The test is therefore a natural fit to
the problem of motion segmentation, in which one can never
conclude, based on low-level image motion alone, that features
belong to the same object. Instead, either the features belong to
different objects with high probability, or there is insufficient
evidence in the data to conclude that they belong to different
objects.

To apply the χ2 test, we compute a distribution of the
residues of all the features in a group, using the motion model
of the group. The distribution is quantized into five bins,
with each of them having a width of 0.3σd, where σd is the
standard deviation of the distribution. We reject the assumption
that the motion of the group is coherent if χ2 =

∑n
i=1(Oi −

Ei)2/Ei > χ2
α;k, where Oi is the observed frequency for bin i,

Ei is the expected frequency for bin i, and χ2
α;k is the critical

threshold for a χ2 distribution with k degrees of freedom and
significance level α. We use α = 0.01% and k = 4.

Initially, we planned to compute the observed distribution
using the current and reference frames and to use a zero-
mean unit-variance Gaussian for the expected distribution, i.e.,
a group would not be split if its residues follow a Gaussian
distribution. However, we found this approach to fail due to the
sparse distribution sampling (only five bins) and the variable
interframe spacing, which together cause single-object distribu-
tions to be non-Gaussian. Instead, we have adopted an approach
in which the expected distribution is generated from the motion
residues using the reference frame rj , and the observed distribu-
tion is generated using the frame round(t − βe(t − rj)), where
0 < βe < 1. This method allows the distribution to adapt to the
changing characteristics of individual objects over time.

The features in a group are dynamically adjusted over time as
features are lost due to the feature tracking and as new features
are added by assimilation. At each frame, the χ2 test is applied

PUNDLIK AND BIRCHFIELD: REAL-TIME MOTION SEGMENTATION 737

Fig. 7. Results on the statue sequence, with the original image being shown in the upper left inset. In lexicographic order, the image frames are 6, 64, 185, 395,
480, and 520. The algorithm forms new groups or splits existing groups due to the arrival or departure of entities in the scene.

Fig. 8. Results on the robot sequence (frames 35, 120, and 100), with the original image being shown in the bottom-right inset. The algorithm splits the group
belonging to the robots into two separate groups as the farther robot accelerates.

Fig. 9. Results on the highway sequence (frames 15, 39, and 61), with the original image being shown in the top-left inset. The algorithm forms new groups or
splits existing groups due to the arrival or departure of vehicles in the scene.

to the features in the group. If the test fails, then the features
are regrouped by using the initialization procedure mentioned
in the previous section. This computation results in either the
group splitting into multiple groups due to the presence of mul-
tiple objects or in causing the outlier features to be discarded
from the group. Once a split has been attempted for a group, the
reference frame is updated to the frame round(t − βr(t − rj)),
where 0 < βr < 1. In our implementation, we set βe = 0.1 and
βr = 0.25. The procedure is shown in Fig. 5.

VI. EXPERIMENTAL RESULTS

The algorithm was tested on a total of six grayscale im-
age sequences. Motion segmentation results for three of these
sequences are shown in Fig. 6, with features assigned to the
group with the highest weight.1 In the free-throw sequence, a

1Videos of the results can be found at http://www.ces.clemson.edu/~stb/
research/ motion_segmentation.

738 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

basketball player moves down in the image as he prepares to
shoot a free-throw, whereas the camera moves slightly down.
Two groups are found by the algorithm, one for the player
(indicated by black triangles) and one for the crowd in the back-
ground (indicated by white circles). In the car map sequence, a
car drives in a straight line behind a map, whereas the camera
remains stationary. The car (white circles), map (black x’s),
ground (black triangles), and background (white squares) are
detected. The car is occluded for a period of time behind the
map and is then detected again as it reappears on the other
side. In the mobile calendar sequence, a toy train pushes a ball
to the left, and a calendar slides down in front of a textured
background, whereas the camera zooms out and moves slightly
left. All of the objects are detected, even though the ball (white
+’s) and train (black circles) move faster than the calendar
(black x’s) and background (white squares). It should be noted
that the white borders around the feature groups are shown only
for the sake of clarity and are not to be considered the object
boundaries.

The statue sequence, shown in Fig. 7, is the most challeng-
ing one. These images were captured by a hand-held camera
moving in an uncontrolled fashion around a statue, whereas a
bicyclist drove behind the statue, and a pedestrian walked in
front of the statue. The motion of the objects is not linear,
and several objects appear and disappear over the course of the
sequence. With just two frames, the algorithm is able to separate
the background (containing the wall and the trees) from the
foreground (containing the grass and the statue). By frame 6,
four groups are found: the statue (black circles), the grass (white
asterisks), the trees (white triangles), and the stone wall (white
squares). Although some of the trees are inadvertently grouped
with the stone wall initially, over time, they are correctly joined
with the rest of the trees as more evidence becomes available.
The bicyclist enters in frame 151, is detected in frame 185
(white x’s), becomes occluded by the statue in frame 312,
emerges on the other side of the statue in frame 356, and is de-
tected again in frame 444 (black stars). Although the algorithm
currently does not attempt correspondence between occluded
and disoccluded objects, a straightforward extension would
maintain the identity of the bicyclist through the occlusion.
The pedestrian enters the scene in frame 444 and is segmented
successfully (black +’s), although the nonrigid motion prevents
the feature tracker from maintaining a large number of features
throughout, and it prevents the affine motion model from well
approximating the actual motion. The pedestrian occludes the
statue from frames 486 to 501, after which the statue is re-
grouped into separate groups for top and bottom. Near the end
of the sequence, the lack of texture on the ground, combined
with motion blur of the shaking camera, prevents the feature
tracker from replenishing the features on the grass after the
pedestrian passes.

Results for the robot sequence are shown in Fig. 8. In this
sequence, two robots move in the same direction roughly par-
allel to the plane of the camera, although there is a significant
pan of the camera toward the end of the sequence. The robots
start from the same initial location and travel together at the
same speed for several seconds, after which the robot that is
farther from the camera accelerates and overtakes the other

Fig. 10. Algorithm automatically and dynamically determines the number of
feature groups. Plotted are the numbers of groups versus image frames for each
of the six sequences: free-throw, mobile calendar, car map, statue, robot, and
vehicle, in lexicographic order.

robot. As seen in the figure, the group belonging to the robots
splits into two groups (one per robot) when their relative speeds
change, whereas the background is maintained as a single group
throughout.

Fig. 9 shows a highway scene captured from a low-angle
camera. Fourteen vehicles enter and exit the scene during the
90 frames of the sequence. Of the ten vehicles in the three
nearby lanes (approaching traffic), 80% of the vehicles were
segmented from the background correctly. The two vehicles in
the nearby lanes that were not detected were close to adjacent
vehicles traveling at the same speed (see the car behind the truck
in the middle image). In addition, the algorithm segmented
four vehicles in the far lanes (receding traffic), even though
their image size is small (on an average of approximately
50 pixels). The background is split into two large regions in the
middle image of the figure because the vehicle traffic removes
the adjacency of the background features in that portion of the
image. Also, the grass on the left side of the image is further
split from the trees due to movement of the latter.

Because the algorithm operates in an incremental fashion,
creating and maintaining groups of features as more evidence
becomes available, the number of groups is determined auto-
matically and dynamically. Fig. 10 shows the dynamic progress
of the results on all of the six sequences (free-throw, mobile cal-
endar, car map, statue, robot, and vehicle). In the first sequence,
the basketball player becomes separable from the background
almost immediately. In the second sequence, the faster train

PUNDLIK AND BIRCHFIELD: REAL-TIME MOTION SEGMENTATION 739

Fig. 11. Insensitivity to parameters. Segmentation results shown for two different values of τ for (from left to right) frames 4, 8, 12, and 64 of the statue sequence.
(Top) τ = 3.0. (Bottom) τ = 0.7.

Fig. 12. Algorithm is insensitive to speed. (Top) Results on a modified statue sequence in which each frame occurs twice, thus reducing the motion by half.
(Bottom) Results on a modified statue sequence in which every other frame has been discarded, thus doubling the motion. Shown are frames 64, 185, 395, and
480 of the original sequence.

and ball become separable after only two frames, whereas six
frames are needed to separate the calendar and background.
In the third sequence, the objects are detected one at a time,
with all four objects being segmented by frame 16. In the statue
sequence, the four primary areas of the scene are segmented
after just a few frames. Then the bicyclist and pedestrian are
detected as they enter the scene and are removed as they leave.
In the robot sequence, the moving robots are separated from the
background, and after a moment, the faster robot is separated
from the slower one. Finally, in the vehicle sequence, a large
number of vehicles appear and disappear throughout the length
of the sequence.

One of the advantages of this algorithm is its lack of
parameters. The parameter τ , which was set to 1.5 for all
the results in this section, governs the amount of image
evidence needed before features are declared to be moving
consistently with one another. It is used to compute pτ =
(1/

√
2σ2

f) exp{−(τ2/2σ2
f)} for (8), where σf = 0.7. Signif-

icantly, the results are insensitive to this parameter: If τ is
increased, then the algorithm simply waits longer before declar-
ing a group by accumulating the motion difference between the
objects over time, whereas if τ is decreased, then the groups
are declared sooner. Fig. 11 shows this insensitivity. Similar
experiments reveal the insensitivity of the results to the other
parameters, such as βe, βr, and nmin.

Insensitivity to speed is shown in Fig. 12. Qualitatively simi-
lar results are obtained by running the algorithm on the original
statue sequence and on a sequence generated by replicating
each frame in the sequence (thus effectively decreasing the rel-
ative speed of the objects by half). Although not shown due to
lack of space, the same result occurs by further replication (i.e.,
reducing the speed by any positive factor). Similarly, nearly
identical results are obtained by running the algorithm on every
other image of the sequence (thus doubling the motions). All
these results were obtained without changing any parameters of
the algorithm.

740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

Fig. 13. Quantitative analysis of the insensitivity of the algorithm to speed for
(left) the upsampled (slower) sequence and (right) the downsampled (faster)
sequence. The plots compare the original and modified sequences using (top)
the number of groups detected, the (middle) root-mean-square error of the
centroids, and (bottom) the average percentage difference between the areas
of the corresponding groups.

Quantitative results are shown in Fig. 13 for these down-
and upsampled statue sequences. Except for the end of the se-
quence, where the errors in the feature tracking cause mismatch
in the groups detected, the maximum error in the number of
groups found is one. These spikes, near frames 160 and 300,
occur due to the late detection and early loss of the bicyclist,
thus indicating a mere temporal misalignment error from which
the algorithm recovers. The difference in the centroids of the
groups is small, averaging 4 pixels over the entire sequence
and never exceeding 6.5 pixels. Similarly, the average errors
in the areas of the groups, computed by the convex hull of
the features in each group, are 12% and 15% for the up-
and downsampled sequences, respectively. These errors are
relatively small, keeping in mind that the sparse algorithm is
not designed to recover accurate shape of the objects and, thus,
is subject to artifacts of feature tracking and density. Moreover,
the errors do not increase with further upsampling.

Fig. 14 shows the updating of the reference frame over time
for two feature groups in the statue sequence: the statue itself
and the trees behind the statue. Because the tree group is large
and contains nonplanar surfaces in the real world, it contains
a fair number of outliers. These outliers cause the χ2 test for
that group to fail often, thus necessitating the reference frame
to be updated frequently. Other groups in the sequence, such as
the grass and the wall, exhibit similar behavior. In contrast, the
small and stable statue group requires only infrequent updating

Fig. 14. Reference frame versus time for two groups in the statue sequence.
(Left) The statue. (Right) The trees behind the statue.

TABLE I
COMPARISON OF THE COMPUTATIONAL TIME OF VARIOUS MOTION

SEGMENTATION ALGORITHMS. THE RIGHTMOST COLUMN

INDICATES THE MAXIMUM NUMBER OF GROUPS FOUND

BY EACH ALGORITHM IN THE REPORTED RESULTS

of the reference frame. Even though the statue is not planar, its
extent allows the affine model to approximate its motion well.

VII. COMPARISON WITH OTHER APPROACHES

In terms of computation, our algorithm is orders of magni-
tude faster than other recent techniques, as shown in Table I.
The algorithm requires only 160 ms per frame for a sequence of
320 × 240 images with 1000 features on a 2.8-GHz Pentium IV
computer using an unoptimized Visual C++ implementation
with the use of the Kanade–Lucas–Tomasi feature tracker [3]
within the Blepo library [4]. Most of this computation (140 ms)
is used by the feature tracking, with only 20 ms needed by
the segmentation algorithm. In [46], 95% of the computation
is spent on the preprocessing stage to determine the number
of groups along with their motion models, which is what
our algorithm produces. Thus, our approach can be seen as
a computationally efficient front end for initializing one of
these more expensive dense segmentation methods in order to
drastically reduce their computational load.

It is difficult to compare the quality of our segmentation with
those of other algorithms because the goals are different. As
an example, Fig. 15 shows the groups found by the algorithm
of Kumar et al. [23] by batch processing small clips from
three of the sequences. Because the algorithm assumes that
objects move parallel to the image plane, it performs well
when that assumption holds, enabling a crisp delineation of
the regions on these clips. However, even on the short clip
of the statue sequence, their algorithm fails to separate the
trees on the left from the wall on the right, and it erroneously
merges much of the grass with the tree/wall region. More
importantly, the algorithm cannot process the entire video
sequence, both because of its computational cost and of the
assumptions that it makes regarding the presence and motion of
objects. In a similar manner, the algorithm does not perform as

PUNDLIK AND BIRCHFIELD: REAL-TIME MOTION SEGMENTATION 741

Fig. 15. Segmentation results of [23] on portions of the statue, robot, and
car map sequences. The algorithm processed frames 161–196, 150–175, and
25–35, respectively. Shown are (left) a sample image from each sequence
and (right) the results for that image.

favorably on the other sequences (e.g., mobile calendar, free-
throw, and vehicles) because of the large rotations and the
appearance/disappearance of objects.

Although other algorithms exhibit strengths according to
the goals for which they were designed, they perform less
favorably on our sequences. For example, the technique of
Jojic and Frey [18] requires a static background, so it is un-
able to properly segment these sequences in which the cam-
era moves considerably. The hard limit of the algorithm of
Smith et al. [34] to a maximum of three regions would also
prevent its obtaining a proper segmentation. Similarly, Cremers
and Soatto [8] detect up to four synthetic regions using the
intersection of two contours, an approach that is unlikely to
generalize to the complexity of sequences containing multiple
independently moving objects. Moreover, their approach han-
dles just two image frames and requires the contours to be ini-
tialized, which is not possible in the context of online automatic
segmentation of live video. Similarly, the approach of Xiao and
Shah [46] computes accurate dense motion layers, but it detects
the number of layers initially and keeps this number con-
stant throughout the sequence. Finally, Rothganger et al. [29]
group sparse feature points by processing a small block of
image frames in batch.

VIII. CONCLUSION

We have addressed the problem of motion segmentation
in a manner that takes into consideration the differential na-
ture of motion. As a result, our approach processes image

sequences incrementally and segments objects that move at
different speeds. The algorithm groups sparse features using a
spatially constrained EM approach that models the interactions
of neighboring features with a Markov assumption. A region-
growing algorithm with a novel consistency check is used to
efficiently initialize the EM algorithm in a greedy manner.
Objects are segmented as soon as enough evidence is available
to distinguish them from their surroundings, and their identities
are maintained over time until they are occluded or leave the
scene. The algorithm detects a relatively large number of ob-
jects and automatically and dynamically determines the number
of objects in the scene, as well as their motions. A χ2 goodness-
of-fit test is used to adaptively update the reference frame by
distinguishing between multiple motions within a group and an
obsolete reference frame. The algorithm operates in real time
and produces accurate estimations on challenging sequences.

There are many ways to improve upon this work. An obvious
application of the algorithm is to serve as a front end for
detecting dense object boundaries and motion discontinuities
in live video, with the boundaries being refined using dense
pixel motion, texture, intensity gradients, and/or color. Various
aspects of the feature tracking could be improved to better
handle nonrigid objects, periodic motion, occlusion, and low-
texture areas. Another enhancement would be to generate a
hierarchical representation of motion segmentation that allows
regions of the image that move differently but share a com-
mon relationship, such as articulated objects, to be accurately
modeled. Moreover, combining the nontextured regions, the
sparse segmentation, and the motion discontinuities and con-
tours would yield a novel representation of video.

ACKNOWLEDGMENT

The authors would like to thank P. Kumar for the assistance
in evaluating the algorithm and Z. Chen for the help in capturing
the robot sequence.

REFERENCES

[1] S. Ayer and H. S. Sawhney, “Layered representation of motion video
using robust maximum-likelihood estimation of mixture models and MDL
encoding,” in Proc. 5th Int. Conf. Comput. Vis., Jun. 1995, pp. 777–784.

[2] A. Barbu and S. C. Zhu, “On the relationship between image and motion
segmentation,” in Proc. SCMVA Workshop (in Conjunction With ECCV),
2004, pp. 51–63.

[3] S. Birchfield, KLT: An implementation of the Kanade–Lucas–Tomasi fea-
ture tracker. [Online]. Available: http://www.ces.clemson.edu/~stb/klt/

[4] S. Birchfield, Blepo Computer Vision Library. [Online]. Available: http://
www.ces.clemson.edu/~stb/blepo/

[5] T. Brox, A. Bruhn, and J. Weickert, “Variational motion segmentation with
level sets,” in Proc. Eur. Conf. Comput. Vis., May 2006, pp. 471–483.

[6] V. Cheung, B. Frey, and N. Jojic, “Video epitomes,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2005, pp. 42–49.

[7] J. Costeira and T. Kanade, “A multi-body factorization method for motion
analysis,” in Proc. Int. Conf. Comput. Vis., 1995, pp. 1071–1076.

[8] D. Cremers and S. Soatto, “Motion competition: A variational approach to
piecewise parametric motion,” Int. J. Comput. Vis., vol. 62, no. 3, pp. 249–
265, May 2005.

[9] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov, “Bilayer segmen-
tation of live video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2006, vol. 1, pp. 53–60.

[10] A. Diplaros, N. Vlassis, and T. Gevers, “A spatially constrained generative
model and an EM algorithm for image segmentation,” IEEE Trans. Neural
Netw., vol. 18, no. 3, pp. 798–808, May 2007.

742 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 3, JUNE 2008

[11] R. Dupont, O. Juan, and R. Keriven, “Robust segmentation of hidden
layers in video sequences,” in Proc. IAPR Int. Conf. Pattern Recog., 2006,
vol. 3, pp. 75–78.

[12] P. Favaro and S. Soatto, “A variational approach to scene reconstruction
and image segmentation from motion blur cues,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2004, vol. 1, pp. 631–637.

[13] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 2003.

[14] P. Fua, “Combining stereo and monocular information to compute dense
depth maps that preserve depth discontinuities,” in Proc. 12th Int. Joint
Conf. Artif. Intell., 1991, pp. 1292–1298.

[15] A. Gruber and Y. Weiss, “Incorporating non-motion cues into 3D motion
segmentation,” in Proc. Eur. Conf. Comput. Vis., May 2006, pp. 84–97.

[16] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance
of people and their activities,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, no. 8, pp. 809–830, Aug. 2000.

[17] M. Irani and P. Anandan, “A unified approach to moving object detection
in 2D and 3D scenes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 6, pp. 577–589, Jun. 1998.

[18] N. Jojic and B. J. Frey, “Learning flexible sprites in video layers,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2001, pp. 199–206.

[19] N. Jojic, J. Winn, and L. Zitnick, “Escaping local minima through hier-
archical model selection: Automatic object discovery, segmentation, and
tracking in video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2006, vol. 1, pp. 117–124.

[20] B. Jung and G. S. Sukhatme, “Detecting moving objects using a single
camera on a mobile robot in an outdoor environment,” in Proc. 8th Conf.
Intell. Auton. Syst., 2004, pp. 980–987.

[21] Q. Ke and T. Kanade, “A subspace approach to layer extraction,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2001, vol. 1, pp. 255–262.

[22] I. Kokkinos and P. Maragos, “An expectation maximization approach to
the synergy between image segmentation and object categorization,” in
Proc. Int. Conf. Comput. Vis., Oct. 2005, vol. 1, pp. 617–624.

[23] M. P. Kumar, P. H. S. Torr, and A. Zisserman, “Learning layered motion
segmentations of video,” in Proc. Int. Conf. Comput. Vis., Oct. 2005,
vol. 1, pp. 33–40.

[24] I. Laptev, S. J. Belongie, P. Pérez, and J. Wills, “Periodic motion detection
and segmentation via approximate sequence alignment,” in Proc. Int.
Conf. Comput. Vis., Oct. 2005, vol. 1, pp. 816–823.

[25] A. Levin and Y. Weiss, “Learning to combine bottom-up and top-down
segmentation,” in Proc. Eur. Conf. Comput. Vis., May 2006, pp. 581–594.

[26] R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies
incremental, sparse, and other variants,” in Learning in Graphical Models,
M. I. Jordan, Ed. Norwell, MA: Kluwer, 1998.

[27] A. S. Ogale, C. Fermüller, and Y. Aloimonos, “Motion segmentation
using occlusions,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6,
pp. 988–992, Jun. 2005.

[28] S. Pundlik and S. T. Birchfield, “Motion segmentation at any speed,” in
Proc. BMVC, Sep. 2006, pp. 427–436.

[29] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “Segmenting, mod-
eling, and matching video clips containing multiple moving objects,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2004, pp. 477–491.

[30] H. S. Sawhney, Y. Guo, and R. Kumar, “Independent motion detection
in 3D scenes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10,
pp. 1191–1199, Oct. 2000.

[31] J. Shi and J. Malik, “Motion segmentation and tracking using normalized
cuts,” in Proc. 6th Int. Conf. Comput. Vis., 1998, pp. 1154–1160.

[32] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[33] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Object level grouping for
video shots,” in Proc. Eur. Conf. Comput. Vis., 2004, vol. 2, pp. 85–98.

[34] P. Smith, T. Drummond, and R. Cipolla, “Layered motion segmentation
and depth ordering by tracking edges,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 4, pp. 479–494, Apr. 2004.

[35] M. Toussaint, V. Willert, J. Eggert, and E. Körner, “Motion segmentation
using inference in dynamic Bayesian networks,” in Proc. Brit. Mach. Vis.
Conf., 2007, pp. 12–21.

[36] Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu, “Image parsing: Unifying
segmentation, detection, and recognition,” Int. J. Comput. Vis., vol. 63,
no. 2, pp. 113–140, Jul. 2005.

[37] J. J. Verbeek, N. Vlassis, and B. Kröse, “Efficient greedy learning of
Gaussian mixture models,” Neural Comput., vol. 15, no. 2, pp. 469–485,
Feb. 2003.

[38] R. Vidal and S. Sastry, “Optimal segmentation of dynamic scenes from
two perspective views,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2003, vol. 2, pp. 281–286.

[39] R. Vidal and D. Singaraju, “A closed form solution to direct motion
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2005,
pp. 510–515.

[40] P. A. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using
patterns of motion and appearance,” Int. J. Comput. Vis., vol. 63, no. 2,
pp. 153–161, Jul. 2005.

[41] N. Vlassis and A. Likas, “A greedy EM algorithm for Gaussian mixture
learning,” Neural Process. Lett., vol. 15, no. 1, pp. 77–87, Feb. 2002.

[42] J. Y. A. Wang and E. H. Adelson, “Representing moving images
with layers,” IEEE Trans. Image Process., vol. 3, no. 5, pp. 625–638,
Sep. 1994.

[43] Y. Weiss and E. H. Adelson, “A unified mixture framework for motion
segmentation: Incorporating spatial coherence and estimating the number
of models,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 1996,
pp. 321–326.

[44] J. Wills, S. Agarwal, and S. Belongie, “What went where,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2003, vol. 1, pp. 37–44.

[45] J. Xiao and M. Shah, “Accurate motion layer segmentation and matting,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2005, pp. 698–703.

[46] J. Xiao and M. Shah, “Motion layer extraction in the presence of occlusion
using graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1644–1659, Oct. 2005.

[47] J. Yan and M. Pollefeys, “A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate,” in Proc. Eur. Conf. Comput. Vis., May 2006, pp. 94–106.

[48] L. Zelnik-Manor, M. Machline, and M. Irani, “Multi-body factorization
with uncertainty: Revisiting motion consistency,” Int. J. Comput. Vis.,
vol. 68, no. 1, pp. 27–41, 2006.

Shrinivas J. Pundlik received the B.E. degree in
electronics engineering from the University of Pune,
Pune, India, in 2002, and the M.S. degree in electrical
engineering from Clemson University, Clemson, SC,
in 2005, where he is currently working toward the
Ph.D. degree in electrical engineering in the Depart-
ment of Electrical and Computer Engineering.

His research interests include image and mo-
tion segmentation, human motion analysis, and
biometrics.

Stanley T. Birchfield (S’91–M’99–SM’06) received
the B.S. degree in electrical engineering from Clem-
son University, Clemson, SC, in 1993, and the
M.S. and Ph.D. degrees from Stanford University,
Stanford, CA, in 1996 and 1999, respectively.

While at Stanford, his research was supported by
a National Science Foundation Graduate Research
Fellowship, and he was part of the winning team
of the 1994 AAAI Mobile Robotics Competition.
From 1999 to 2003, he was a Research Engineer with
Quindi Corporation, a start-up company in Palo Alto,

CA. Since 2003, he has been an Assistant Professor with the Department of
Electrical and Computer Engineering, Clemson University, where his research
interests include visual correspondence, tracking, and segmentation, particu-
larly applied to real-time systems.

