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Abstract

We present an incremental approach to motion segmentd&teature points
are detected and tracked throughout an image sequencédeafehtures are
grouped using a region-growing algorithm with an affine motnodel. The
primary parameter used by the algorithm is the amount ofesdd that must
accumulate before features are grouped. Contrasted vathgus work, the
algorithm allows for a variable number of image frames teeifthe decision
process, thus enabling objects to be detected indepegdéitieir velocity

in the image. Procedures are presented for grouping featur@asuring the
consistency of the resulting groups, assimilating newuiest into existing
groups, and splitting groups over time. Experimental tssuh a number of
challenging image sequences demonstrate the effectsef#ise technique.

1 Introduction

Common fate, also known as common motion, is a powerful cuiefage understanding.
According to Gestalt psychology, the human visual systeongs pixels that move in the
same direction in order to focus attention on perceptualigst regions of the scene. As
a result, the ability to segmentimages based upon pixelbmd@iimportant for automated
image analysis.

Previous methods for motion segmentation can be divides $everal categories.
Layered approaches assign pixels to layers, compute a patamotion for each layer,
and determine the number of layers; these techniques ofeeaxpectation-maximization
(EM) [13, 14, 1, 5] or graph cuts [16, 15] to minimize a funct@. Other methods formu-
late the problem as one of multi-body factorization, whiglsolved using subspace con-
straints on a measurement matrix computed over some nuritvanees [12, 7, 6]. Addi-
tional approaches include clustering pixels based on thetion profiles using eigenvec-
tors [9], minimizing a continuous energy functional ovempatotemporal volume using
spatio-temporal gradients [3], or applying the rank caistrto feature correspondences
in order to divide the sequence into locally coherent regi@). Object-level grouping
of affine patches in a video shot for the purpose of videoawdtihas also been explored
[11].

A common theme among these algorithms is their batch primgpss image se-
guences. Previous techniques operate on either two imdgedirme or on a spatio-
temporal volume containing a fixed number of images. In tise cd multiple frames, the
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Figure 1. A fast object (object 1) and a slow object (objear@yve against a stationary
background. EFT: If the thresholdr is dependent upon velocity, then the slowly moving
objectis never detected.®1T: Making1 relative to a fixed reference frame enables both
objects to be detected independently of their speed, asao@nough image evidence
accumulates (timg for object 1 and; for object 2).

motion of the object is often considered to be constant aviglohanging throughout the
sequence of frames under consideration.

The drawback of using a fixed number of image frames is ikkdstt with a simple
example in Figure 1 in which two objects move at differentesfs/\x; /Aty andAx;,/Aty,
respectively, relative to a static background. With a fixatchber of frames, the reference
frame constantly changes as the current frame changes. mtiend of evidence in the
block of frames is dependent upon the velocity of the objgetthat the slowly moving
object is never detected becaudse/At, < T. On the other hand, using a fixed reference
frame leads to a variable number of image frames in the bltaks enabling objects
to be detected independently of their speed once enougkreadnas accumulated so
that Ax; > 1. Note that the problem becomes even more acute in the caseltple
objects, all moving at different velocities, because st@liimage noise may prevent a
single parameter from working even if it is selected manually for the specifigsence.

In this paper we present an incremental approach to motgmeetation. Sparse fea-
ture points are detected and tracked throughout the imageesee, and segmentation is
performed each time a new image frame becomes availableffisiept region-growing
technique is used to group the features according to a ld&rgrarametric model. Ob-
jects are detected incrementally as enough evidence adatasto indicate that they are
distinct from their surroundings. The only parameter of akgorithm is the amount of
evidence (in terms of motion variation) needed to decidefdstures belong to different
groups. The number of groups is determined automaticallycdymamically as objects
move around and enter and leave the scene. We demonstraechimgue on several
challenging and long sequences exhibiting unpredictaidenan-rigid motion, occlusion
and disocclusion, and containing up to six objects at a time.

2 Tracking Features
Feature points are automatically selected and tracked)ubim Kanade-Lucas-Tomasi

(KLT) feature tracker [2], which computes the displacement [dy dy]T that mini-
mizes the sum of squared differences between consecutageifnames$ andJ:
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Figure 2: The first three images show results of the algorihmupFeat ur es on the
statue sequence using different random seed points. Ttierthend frames are 1 and
7, respectively. The red star indicates the initial seeaiporhe last image shows the
consistent groups found ir oupConsi st ent Feat ur es.

whereW is a window of pixels ak = [x y]" around the feature point. This nonlinear
error is minimized by repeatedly solving its linearizedsien:

Zd=e,

where

Z = XZNQ(X)QT (x)

e = XZNQ(X)U (x) =I(x)],

andg(x) = dw/dx is the spatial gradient of the average image. These eqgation
are similar to the standard Lucas-Kanade equations buyarmetric with respect to the
two images. As in [10], features are automatically seleatethose points in the image
for which both eigenvalues & are greater than a minimum threshold. The affine test
comparing the appearance of a feature in the current imathete/appearance in the first
image is used to declare features lost [10].

3 Grouping Features Using Two Frames

Once features are tracked from one image frame to anotlededtures are grouped using
an affine motion model on the displacements of the coordinatéhe features. In other
words, whether a featurkis incorporated into a group with an affine motion mo#és$
determined by measuring the difference

Diff (faA) - ||Ax(ref) 7X(Curr)||7

wherex(©™ andx(®) are the coordinates of the feature in the current and referen
frames, respectively, angl- || is theL, norm. For simplicity, homogeneous coordinates
are used in this equation, so thfais a 3x 3 matrix with[0 0 1] as the bottom row.

A region growing approach is adopted, as shown in the alyoi@ oupFeat ur es.
First, all the features are labeled as ‘ungrouped’, andtarfegoint is selected at random
as the seed point to begin a new grogp The motion of the group is computed by
fitting affine parameters to the motion of the feature and fallsdammediate ungrouped
neighbors 4;(f) using a Delaunay triangulation of the features in the fimtfe. The



Algorithm: Gr oupFeat ur es

Input: A set of features with motion vectors
Output: A set of groups of features

1. Set all features to ‘ungrouped’
2. While at least one feature is ‘ungrouped’,

(a) Select arandom ‘ungrouped’ feature
(b) SetZ — {f}UA(f)

(c) Compute affine motion modélof .#
(d) Repeat until# does not change

i. Set.7 «— {f’}, wheref’ is the feature closest to the centroid 8f
ii. Repeat until” is empty
(a) Find similar nearby features
S —Simlar (AM(F),AT)
(b) Set¥ — #.7
(c) Compute affine motion modélof .#
(e) Setall features i# to ‘grouped’

process continues to add any neighbor of a feature in thepganase motion is similar
to the motion of the group. The functio#f < Si mi | ar (A(%#),A, T) returns all the
ungrouped neighbor$ of the features in# for which Diff(f,A) < 1, wherert is a
threshold indicating the maximum motion difference alldwaVhen no more features
can be added to the group, the group is reset to the featusestlto the centroid of the
group, and the process begins again. Convergence is usbédined within two or three
iterations.

Now that a single group has been found, all the features igithep are labeled with
a unique group id. The procedure then starts again usingi@anmndom feature as the
seed point among all those that have not yet been groupedhamtocess is repeated
until all features have been grouped. Note that the algordélitomatically determines
the number of groups.

If there is not enough information in the motion vectors tbatdy group the fea-
tures, then the output d& oupFeat ur es will be sensitive to the randomly chosen
seed points. To solve this problem, we introdusead-point consistency cheegkich is
reminiscent of the left-right consistency check of stereadahing [4]. In the algorithm
GroupConsi st ent Feat ur es, the grouping algorithm is ruls times starting from
different random seed points. A consistency matrig maintained in whicke(f, f') is
the number of results in which and f’ belong to the same group. A set of features is
said to form a consistent groupdff, f') = Ns for all features in the set. The collecti@h
of consistent groups larger than a minimum sigg, are retained, and all the remaining
features are set again to ‘ungrouped’. Figure 2 displayvdnging groups for different
seed points on an example sequence, along with the corigisterps.



Algorithm: Gr oupConsi st ent Feat ur es

Input: A set of features with motion vectors
Output: A set of groups of features, and a set of un-
grouped features

1. c(f, f’) « O for every pair of feature§ and f’
2. fori «+ 1toN;,

(8) RunGr oupFeat ures

(b) For each pair of featurésand f’, increment(f, f’) if f andf’ belong to the
same group

3. Set¢ — {} (empty set)
4. Repeat until all features have been considered,

(a) Gather a maximal se¥ of consistent features such thef, f') = Ns for all
pairs of features in the set

(b) if |.#| > Nmin, then® — € |J.7

5. Set all features that are not in a large consistent feagtr@.e., there is no# € ¥
such thatf € .%#) to ‘ungrouped’

4 Maintaining Feature Groups Over Time

Like previous algorithms, the grouping procedure of thé¢ $&stion operates on exactly
two image frames. If the frames are spaced closely togetier,slowly moving objects
will not be detected. On the other hand, if the frames areexpfar apart, then the affine
motion assumption and the feature tracking are likely tb fs8 a result, algorithms that
fix the inter-frame spacing (whether operating on a pair afnfes or on a spatiotemporal
block of frames) make potentially dangerous assumptioasitathe amount of motion
of the objects in the scene. The dynamic nature of featunet@gparticularly their loss
over time as the scene changes, should be taken into acchente@mparing successive
images.

As shown in the algorithnVai nt ai nGr oups, our approach performs three com-
putations when a new image frame becomes available. Hstcansistent grouping
procedure just described is applied to all the ungroupetlifes. This step generates
additional groups if sufficient evidence for their existefas become available.

Secondly, the consistent grouping procedure is appliebeddatures of each exist-
ing group. If a group exhibits multiple motions, then it wik split into multiple groups
and/or some of its features will be discarded from the grauplabeled instead as ‘un-
grouped’. Because groups tend to be stable over time, wefbawe that this procedure
does not need to be performed every frame. The fundtimst returns the number of
features in the reference frame of a group that have beenlfdsiis number exceeds a
threshold 4 ), then the reference frame is updated by setting it to theeatiframe, and



Algorithm: Mai nt ai nGr oups

Input: A set of groups, and a set of ungrouped features
Output: A set of groups, and a set of ungrouped features

1. Grouping.RunGr oupConsi st ent Feat ur es on all the ungrouped features
2. Splitting. For each group# such that.ost (%) > A,

(a) Update reference frame fof.
(b) RunGr oupConsi st ent Feat ur es on the features it

3. Assimilation.For each ‘ungrouped’ featurig

() & — Ag(f)
(b) If .7 is nonempty,
i. Set¥ to the set of groups to which the featuresihbelong
ii. Foreach¥ € ¢,
(a) Compute affine motion modalof .#
(b) Set# — ZY{f} andf to ‘grouped’ if
e Diff(f,A)<rtand
e Di ff(f,A) <Diff(f,A)+1 for the affine motionA’ of any
other group#’ € ¢

the grouping procedure is run. We geto 25% of the features in the group.

The third computation is to assimilate ungrouped featunas éxisting groups. For
each ungrouped featur we consider its immediate neighborg (in the Delaunay
triangulation) that are already grouped. If there are ndwgighbors, then no further
tests are performed. If there is exactly one such neighben the feature is assimilated
into the neighbor’s group if the motion of the feature is $&mnto that of the group, using
the same threshold used in the grouping procedure. If there is more than one such
neighbor belonging to different groups, then the featurassimilated into one of the
groups only if its motion is similar to that of the group anddissimilar to that of the
other groups, using the threshaid

5 Experimental Results

The algorithm was tested on four grayscale image sequesto@sn in Figure 3. Because
of space limitations, only one image frame from each of thgusaces is shown. In
the first sequence (20 frames total), a basketball playeesidewn in the image as he
prepares to shoot a freethrow, while the camera moves lsligbivn. The player (yellow

triangles) is successfully segmented from the backgrowed ¢ircles). In the second
sequence (101 frames), a toy train pushes a ball to the Idfaatalendar slides down
in front of a textured background, while the camera zoomsanat moves slightly left.
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Figure 3: Top: A frame from each of the four sequencesom®om: Results of the
proposed algorithm on the images, with different groupgiaigd by different colors and
shapes.

All of the objects are detected, even though the ball (yeltoangles) and train (red
circles) move faster than the calendar (blue squares) acldjb@und (green diamonds).
In the third sequence (35 frames), a car drives in a straigatdehind a map while the
cameraremains stationary. The car (red circles), mapigteenonds), foreground (blue
squares), and background (yellow triangles) are detected.

The fourth sequence (520 frames) is by far the most diffi¢nlthis sequence a hand-
held camera is moved in an uncontrolled fashion around aestathile a bicyclist drives
behind the statue and a pedestrian walks in front of theestdthhe motion of the objects
is not linear, and several objects appear and disappeatloveourse of the sequence.
The last image of Figure 3 shows that the algorithm succlgsfetects the statue (blue
squares), the wall behind the statue (yellow triangle®),grass (green diamonds), the
pedestrian (magenta stars), the bicyclist (red circles),the portion of the background
visible through the arch (cyan asterisks).

As mentioned earlier, the algorithm operates in an increatéashion, creating and
maintaining groups of features as more evidence becoméiglaiea The number of
groups is determined automatically. Figure 4 displays gheachic progress of the results
on each of the sequences. In the first sequence the basksthyadl becomes separable
from the background almost immediately. In the second secpi¢he faster train and
ball become separable after only two frames, while six fraare needed to separate the
calendar and background. In the third sequence the objectetected one by one.

To better illustrate the progress of the algorithm over tiseyveral images from the
statue sequence are shown in Figure 5. With just two franeealtforithm is able to sep-
arate the background (containing the wall and the treeg) fhe foreground (containing
the grass and the statue). By frame 8 the statue has beemtsepfom the grass. The
bicyclist enters in frame 151 (detected in frame 185), bexootcluded by the statue in
frame 312, and emerges on the other side of the statue in Bafédetected again in
frame 444). Because the algorithm does not attempt comelgnze between occluded
and disoccluded objects, the bicylist group receives adifit group id after the disoc-
clusion. The pedestrian enters the scene in frame 444 arebimented successfully,
although the non-rigid motion prevents the feature trafiken maintaining a large num-
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Figure 4: The dynamic progress of the algorithm on the foguseaces, plotted as the
number of feature groups versus time. The number of grougstezmined dynamically
and automatically by the algorithm.

ber of features throughout. The pedestrian occludes tieesteom frames 346 to 501,
after which the statue is regrouped. Features on the grassoaregrouped due to an
apparent error in the KLT feature tracker that preventafestfrom being replenished on
the grass after the pedestrian passes.

One of the advantages of the proposed algorithm is its laglacdmeters. The pri-
mary parameterr, which was set to 5 for all the results in this section, governs the
amount of image evidence needed before features are ditdelne moving consistently
with one another. The same parameter is also used to detewhien to split an existing
group. Significantly, the results are insensitive even i® plarameter: Iff is increased,
then the algorithm simply waits longer before declaring @ugr (assuming that the mo-
tion difference between objects accumulates over timejeviht is decreased then the
groups are declared sooner. As an example, Figure 6 shoesstiedly the same group-
ing results on the statue sequence using the valgd.7, but the groups appear nearly
twice as fast as before. Similarly, nearly identical reswhen the algorithm is run on
every other image of the sequence (thus doubling the mgtieitisout changing any pa-
rameters (i.e.T = 1.5). The algorithm is fast, requiring only 20 ms per frame (eding
feature tracking) for a sequence of 32@40 images with 1000 features on a 2.8 GHz P4
computer using an unoptimized C++ implementation.

6 Conclusion

We have approached the problem of motion segmentation froavel point of view by
removing the usual restriction of batch processing. Addnesthe fact that motion is in-
herently a differential concept, our technique procegsagies in an incremental fashion.
Objects are segmented as soon as enough evidence is avédalstinguish them from
their surroundings, and their identities are maintaineer éivne until they are occluded
or leave the scene. The algorithm uses a single parameteelythe amount of motion



Figure 5: Results of the algorithm on several frames of thastsequence (shown in
lexicographic order: frames 3, 8, 64, 185, 395, 445, 487,5#2@). The feature points
in black in the first two frames are ‘ungrouped’. After the tfitmme in which all of
the features are ungrouped, subsequent images show thatimnrof new groups or the
splitting of existing groups due to the arrival or departofentities in the scene.

variation allowable within a region, and it automaticallydadynamically computes the
number of objects in the scene. The technique presentedfarps sparse features using
an efficient region-growing algorithm that utilizes a nowehsistency check to ascertain
whether the results should be trusted or more evidence dedee

The work presented here can be extended in several ways.tR@slgorithm does not
maintain the identity of objects after they have been oaudA natural solution would
be to use a layered representation, which would help pé#atigun the case of partial
occlusion. Secondly, the boundaries around the groupdaieuincorporated into the
algorithm in order to enable the technique to operate orctinigplementary information.
Finally, for applications in which dense segmentation tiged, the technique could be
combined with pixel-level assignments in order to fill in Hreas left empty by the current
sparse representation.
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