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Abstract

We present an incremental approach to motion segmentation.Feature points
are detected and tracked throughout an image sequence, and the features are
grouped using a region-growing algorithm with an affine motion model. The
primary parameter used by the algorithm is the amount of evidence that must
accumulate before features are grouped. Contrasted with previous work, the
algorithm allows for a variable number of image frames to affect the decision
process, thus enabling objects to be detected independently of their velocity
in the image. Procedures are presented for grouping features, measuring the
consistency of the resulting groups, assimilating new features into existing
groups, and splitting groups over time. Experimental results on a number of
challenging image sequences demonstrate the effectiveness of the technique.
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1 Introduction

Common fate, also known as common motion, is a powerful cue for image understanding.
According to Gestalt psychology, the human visual system groups pixels that move in the
same direction in order to focus attention on perceptually salient regions of the scene. As
a result, the ability to segment images based upon pixel motion is important for automated
image analysis.

Previous methods for motion segmentation can be divided into several categories.
Layered approaches assign pixels to layers, compute a parametric motion for each layer,
and determine the number of layers; these techniques often use expectation-maximization
(EM) [13, 14, 1, 5] or graph cuts [16, 15] to minimize a functional. Other methods formu-
late the problem as one of multi-body factorization, which is solved using subspace con-
straints on a measurement matrix computed over some number of frames [12, 7, 6]. Addi-
tional approaches include clustering pixels based on theirmotion profiles using eigenvec-
tors [9], minimizing a continuous energy functional over a spatiotemporal volume using
spatio-temporal gradients [3], or applying the rank constraint to feature correspondences
in order to divide the sequence into locally coherent regions [8]. Object-level grouping
of affine patches in a video shot for the purpose of video retrieval has also been explored
[11].

A common theme among these algorithms is their batch processing of image se-
quences. Previous techniques operate on either two images at a time or on a spatio-
temporal volume containing a fixed number of images. In the case of multiple frames, the



Figure 1: A fast object (object 1) and a slow object (object 2)move against a stationary
background. LEFT: If the thresholdτ is dependent upon velocity, then the slowly moving
object is never detected. RIGHT: Makingτ relative to a fixed reference frame enables both
objects to be detected independently of their speed, as soonas enough image evidence
accumulates (timet1 for object 1 andt2 for object 2).

motion of the object is often considered to be constant or slowly changing throughout the
sequence of frames under consideration.

The drawback of using a fixed number of image frames is illustrated with a simple
example in Figure 1 in which two objects move at different speeds,∆x1/∆t1 and∆x2/∆t2,
respectively, relative to a static background. With a fixed number of frames, the reference
frame constantly changes as the current frame changes. The amount of evidence in the
block of frames is dependent upon the velocity of the object,so that the slowly moving
object is never detected because∆x2/∆t2 < τ. On the other hand, using a fixed reference
frame leads to a variable number of image frames in the block,thus enabling objects
to be detected independently of their speed once enough evidence has accumulated so
that ∆xi > τ. Note that the problem becomes even more acute in the case of multiple
objects, all moving at different velocities, because realistic image noise may prevent a
single parameterτ from working even if it is selected manually for the specific sequence.

In this paper we present an incremental approach to motion segmentation. Sparse fea-
ture points are detected and tracked throughout the image sequence, and segmentation is
performed each time a new image frame becomes available. An efficient region-growing
technique is used to group the features according to a low-order parametric model. Ob-
jects are detected incrementally as enough evidence accumulates to indicate that they are
distinct from their surroundings. The only parameter of thealgorithm is the amount of
evidence (in terms of motion variation) needed to decide that features belong to different
groups. The number of groups is determined automatically and dynamically as objects
move around and enter and leave the scene. We demonstrate thetechnique on several
challenging and long sequences exhibiting unpredictable and non-rigid motion, occlusion
and disocclusion, and containing up to six objects at a time.

2 Tracking Features

Feature points are automatically selected and tracked using the Kanade-Lucas-Tomasi
(KLT) feature tracker [2], which computes the displacementd = [dx dy ]T that mini-
mizes the sum of squared differences between consecutive image framesI andJ:
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Figure 2: The first three images show results of the algorithmGroupFeatures on the
statue sequence using different random seed points. The start and end frames are 1 and
7, respectively. The red star indicates the initial seed point. The last image shows the
consistent groups found byGroupConsistentFeatures.

whereW is a window of pixels atx = [x y]T around the feature point. This nonlinear
error is minimized by repeatedly solving its linearized version:

Zd = e,

where

Z = ∑
x∈W

g(x)gT(x)

e = ∑
x∈W

g(x)[I(x)−J(x)],

andg(x) = ∂ I(x)+J(x)
2 /∂x is the spatial gradient of the average image. These equations

are similar to the standard Lucas-Kanade equations but are symmetric with respect to the
two images. As in [10], features are automatically selectedas those points in the image
for which both eigenvalues ofZ are greater than a minimum threshold. The affine test
comparing the appearance of a feature in the current image with its appearance in the first
image is used to declare features lost [10].

3 Grouping Features Using Two Frames

Once features are tracked from one image frame to another, the features are grouped using
an affine motion model on the displacements of the coordinates of the features. In other
words, whether a featuref is incorporated into a group with an affine motion modelA is
determined by measuring the difference

Diff( f ,A) = ||Ax(re f)−x(curr)||,

wherex(curr) andx(re f) are the coordinates of the feature in the current and reference
frames, respectively, and|| · || is theL2 norm. For simplicity, homogeneous coordinates
are used in this equation, so thatA is a 3×3 matrix with[0 0 1] as the bottom row.

A region growing approach is adopted, as shown in the algorithmGroupFeatures.
First, all the features are labeled as ‘ungrouped’, and a feature point is selected at random
as the seed point to begin a new groupF . The motion of the group is computed by
fitting affine parameters to the motion of the feature and all of its immediate ungrouped
neighborsNu( f ) using a Delaunay triangulation of the features in the first frame. The



Algorithm: GroupFeatures

Input: A set of features with motion vectors
Output: A set of groups of features

1. Set all features to ‘ungrouped’

2. While at least one feature is ‘ungrouped’,

(a) Select a random ‘ungrouped’ featuref

(b) SetF ← { f}
⋃

Nu( f )

(c) Compute affine motion modelA of F

(d) Repeat untilF does not change

i. SetF ← { f ′}, wheref ′ is the feature closest to the centroid ofF

ii. Repeat untilS is empty

(a) Find similar nearby features
S ← Similar(Nu(F ),A,τ)

(b) SetF ←F
⋃

S

(c) Compute affine motion modelA of F

(e) Set all features inF to ‘grouped’

process continues to add any neighbor of a feature in the group whose motion is similar
to the motion of the group. The functionS ← Similar(Nu(F ),A,τ) returns all the
ungrouped neighborsf of the features inF for which Diff( f ,A) < τ, whereτ is a
threshold indicating the maximum motion difference allowed. When no more features
can be added to the group, the group is reset to the feature closest to the centroid of the
group, and the process begins again. Convergence is usuallyobtained within two or three
iterations.

Now that a single group has been found, all the features in thegroup are labeled with
a unique group id. The procedure then starts again using another random feature as the
seed point among all those that have not yet been grouped, andthe process is repeated
until all features have been grouped. Note that the algorithm automatically determines
the number of groups.

If there is not enough information in the motion vectors to reliably group the fea-
tures, then the output ofGroupFeatures will be sensitive to the randomly chosen
seed points. To solve this problem, we introduce aseed-point consistency checkwhich is
reminiscent of the left-right consistency check of stereo matching [4]. In the algorithm
GroupConsistentFeatures, the grouping algorithm is runNs times starting from
different random seed points. A consistency matrixc is maintained in whichc( f , f ′) is
the number of results in whichf and f ′ belong to the same group. A set of features is
said to form a consistent group ifc( f , f ′) = Ns for all features in the set. The collectionC
of consistent groups larger than a minimum sizenmin are retained, and all the remaining
features are set again to ‘ungrouped’. Figure 2 displays thevarying groups for different
seed points on an example sequence, along with the consistent groups.



Algorithm: GroupConsistentFeatures

Input: A set of features with motion vectors
Output: A set of groups of features, and a set of un-
grouped features

1. c( f , f ′)← 0 for every pair of featuresf and f ′

2. for i← 1 to Ns,

(a) RunGroupFeatures

(b) For each pair of featuresf and f ′, incrementc( f , f ′) if f and f ′ belong to the
same group

3. SetC ← {} (empty set)

4. Repeat until all features have been considered,

(a) Gather a maximal setF of consistent features such thatc( f , f ′) = Ns for all
pairs of features in the set

(b) if |F |> nmin, thenC ← C
⋃

F

5. Set all features that are not in a large consistent featureset (i.e., there is noF ∈ C

such thatf ∈F ) to ‘ungrouped’

4 Maintaining Feature Groups Over Time

Like previous algorithms, the grouping procedure of the last section operates on exactly
two image frames. If the frames are spaced closely together,then slowly moving objects
will not be detected. On the other hand, if the frames are spaced far apart, then the affine
motion assumption and the feature tracking are likely to fail. As a result, algorithms that
fix the inter-frame spacing (whether operating on a pair of frames or on a spatiotemporal
block of frames) make potentially dangerous assumptions about the amount of motion
of the objects in the scene. The dynamic nature of feature points, particularly their loss
over time as the scene changes, should be taken into account when comparing successive
images.

As shown in the algorithmMaintainGroups, our approach performs three com-
putations when a new image frame becomes available. First, the consistent grouping
procedure just described is applied to all the ungrouped features. This step generates
additional groups if sufficient evidence for their existence has become available.

Secondly, the consistent grouping procedure is applied to the features of each exist-
ing group. If a group exhibits multiple motions, then it willbe split into multiple groups
and/or some of its features will be discarded from the group and labeled instead as ‘un-
grouped’. Because groups tend to be stable over time, we havefound that this procedure
does not need to be performed every frame. The functionLost returns the number of
features in the reference frame of a group that have been lost. If this number exceeds a
threshold (λ ), then the reference frame is updated by setting it to the current frame, and



Algorithm: MaintainGroups

Input: A set of groups, and a set of ungrouped features
Output: A set of groups, and a set of ungrouped features

1. Grouping.RunGroupConsistentFeatures on all the ungrouped features

2. Splitting.For each groupF such thatLost(F ) ≥ λ ,

(a) Update reference frame forF .

(b) RunGroupConsistentFeatures on the features inF

3. Assimilation.For each ‘ungrouped’ featuref ,

(a) S ←Ng( f )

(b) If S is nonempty,

i. SetG to the set of groups to which the features inS belong

ii. For eachF ∈ G ,

(a) Compute affine motion modelA of F

(b) SetF ←F
⋃

{ f} and f to ‘grouped’ if

• Diff( f ,A) ≤ τ and

• Diff( f ,A) ≤ Diff( f ,A′) + τ for the affine motionA′ of any
other groupF ′ ∈ G

the grouping procedure is run. We setλ to 25% of the features in the group.
The third computation is to assimilate ungrouped features into existing groups. For

each ungrouped featuref , we consider its immediate neighborsNg (in the Delaunay
triangulation) that are already grouped. If there are no such neighbors, then no further
tests are performed. If there is exactly one such neighbor, then the feature is assimilated
into the neighbor’s group if the motion of the feature is similar to that of the group, using
the same thresholdτ used in the grouping procedure. If there is more than one such
neighbor belonging to different groups, then the feature isassimilated into one of the
groups only if its motion is similar to that of the group and isdissimilar to that of the
other groups, using the thresholdτ.

5 Experimental Results

The algorithm was tested on four grayscale image sequences,shown in Figure 3. Because
of space limitations, only one image frame from each of the sequences is shown. In
the first sequence (20 frames total), a basketball player moves down in the image as he
prepares to shoot a freethrow, while the camera moves slightly down. The player (yellow
triangles) is successfully segmented from the background (red circles). In the second
sequence (101 frames), a toy train pushes a ball to the left and a calendar slides down
in front of a textured background, while the camera zooms outand moves slightly left.



freethrow mobile-calendar car-map statue

Figure 3: TOP: A frame from each of the four sequences. BOTTOM: Results of the
proposed algorithm on the images, with different groups indicated by different colors and
shapes.

All of the objects are detected, even though the ball (yellowtriangles) and train (red
circles) move faster than the calendar (blue squares) and background (green diamonds).
In the third sequence (35 frames), a car drives in a straight line behind a map while the
camera remains stationary. The car (red circles), map (green diamonds), foreground (blue
squares), and background (yellow triangles) are detected.

The fourth sequence (520 frames) is by far the most difficult.In this sequence a hand-
held camera is moved in an uncontrolled fashion around a statue, while a bicyclist drives
behind the statue and a pedestrian walks in front of the statue. The motion of the objects
is not linear, and several objects appear and disappear overthe course of the sequence.
The last image of Figure 3 shows that the algorithm successfully detects the statue (blue
squares), the wall behind the statue (yellow triangles), the grass (green diamonds), the
pedestrian (magenta stars), the bicyclist (red circles), and the portion of the background
visible through the arch (cyan asterisks).

As mentioned earlier, the algorithm operates in an incremental fashion, creating and
maintaining groups of features as more evidence becomes available. The number of
groups is determined automatically. Figure 4 displays the dynamic progress of the results
on each of the sequences. In the first sequence the basketballplayer becomes separable
from the background almost immediately. In the second sequence the faster train and
ball become separable after only two frames, while six frames are needed to separate the
calendar and background. In the third sequence the objects are detected one by one.

To better illustrate the progress of the algorithm over time, several images from the
statue sequence are shown in Figure 5. With just two frames the algorithm is able to sep-
arate the background (containing the wall and the trees) from the foreground (containing
the grass and the statue). By frame 8 the statue has been separated from the grass. The
bicyclist enters in frame 151 (detected in frame 185), becomes occluded by the statue in
frame 312, and emerges on the other side of the statue in frame356 (detected again in
frame 444). Because the algorithm does not attempt correspondence between occluded
and disoccluded objects, the bicylist group receives a different group id after the disoc-
clusion. The pedestrian enters the scene in frame 444 and is segmented successfully,
although the non-rigid motion prevents the feature trackerfrom maintaining a large num-
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Figure 4: The dynamic progress of the algorithm on the four sequences, plotted as the
number of feature groups versus time. The number of groups isdetermined dynamically
and automatically by the algorithm.

ber of features throughout. The pedestrian occludes the statue from frames 346 to 501,
after which the statue is regrouped. Features on the grass are not regrouped due to an
apparent error in the KLT feature tracker that prevents features from being replenished on
the grass after the pedestrian passes.

One of the advantages of the proposed algorithm is its lack ofparameters. The pri-
mary parameter,τ, which was set to 1.5 for all the results in this section, governs the
amount of image evidence needed before features are declared to be moving consistently
with one another. The same parameter is also used to determine when to split an existing
group. Significantly, the results are insensitive even to this parameter: Ifτ is increased,
then the algorithm simply waits longer before declaring a group (assuming that the mo-
tion difference between objects accumulates over time), while if τ is decreased then the
groups are declared sooner. As an example, Figure 6 shows essentially the same group-
ing results on the statue sequence using the valueτ = 0.7, but the groups appear nearly
twice as fast as before. Similarly, nearly identical results when the algorithm is run on
every other image of the sequence (thus doubling the motions) without changing any pa-
rameters (i.e.,τ = 1.5). The algorithm is fast, requiring only 20 ms per frame (excluding
feature tracking) for a sequence of 320×240 images with 1000 features on a 2.8 GHz P4
computer using an unoptimized C++ implementation.

6 Conclusion

We have approached the problem of motion segmentation from anovel point of view by
removing the usual restriction of batch processing. Addressing the fact that motion is in-
herently a differential concept, our technique processes images in an incremental fashion.
Objects are segmented as soon as enough evidence is available to distinguish them from
their surroundings, and their identities are maintained over time until they are occluded
or leave the scene. The algorithm uses a single parameter, namely the amount of motion



Figure 5: Results of the algorithm on several frames of the statue sequence (shown in
lexicographic order: frames 3, 8, 64, 185, 395, 445, 487, and520). The feature points
in black in the first two frames are ‘ungrouped’. After the first frame in which all of
the features are ungrouped, subsequent images show the formation of new groups or the
splitting of existing groups due to the arrival or departureof entities in the scene.

variation allowable within a region, and it automatically and dynamically computes the
number of objects in the scene. The technique presented heregroups sparse features using
an efficient region-growing algorithm that utilizes a novelconsistency check to ascertain
whether the results should be trusted or more evidence is needed.

The work presented here can be extended in several ways. First, the algorithm does not
maintain the identity of objects after they have been occluded. A natural solution would
be to use a layered representation, which would help particularly in the case of partial
occlusion. Secondly, the boundaries around the groups should be incorporated into the
algorithm in order to enable the technique to operate on thiscomplementary information.
Finally, for applications in which dense segmentation is required, the technique could be
combined with pixel-level assignments in order to fill in theareas left empty by the current
sparse representation.
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