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Abstract— We present a novel, simple algorithm for mobile a complicated approach. Intuitively, the vastly overdeieed
robot navigation. Using a teach-replay approach, the robotis nature of the problem (thousands of pixels in an image versus
manually led along a desired path in a teaching phase, then ,ne trning command output) would seem to indicate that a
the robot autonomously follows that path in a replay phase. . | thod miaht be feasible. In thi i
The technique requires a single off-the-shelf, forward-loking S'mP er metho ) mig € feasi e._ n his paper we presen
camera with no calibration (including no calibration for lens @& simple technique that uses a single, off-the-shelf camera
distortion). Feature points are automatically detected an tracked attached to the front of the robot. The technique follows the
throughout the image sequence, and the feature coordinateis  teach-replay approach [5] in which the robot is manually led
the replay phase are compared with those computed previousl ,6gh the path once during a teaching phase and then follow

in the teaching phase to determine the turning commands fortte - -
robot. The algorithm is entirely qualitative in nature, requiring the path autonomously during the replay phase. Without any

no map of the environment’ no image \]acobianl no homography, calibration (eVen calibration for lens distortion), theboo is
no fundamental matrix, and no assumption about a flat ground able to follow the path by making ontyualitativecomparisons

plane. Experimental results demonstrate the capability ofau- petween the feature coordinates computed during the tegchi
tonomous navigation in both indoor and outdoor environmens,  yp4se with those computed during replay. The technique does
on both flat and slanted surfaces, with dynamic occluding olgcts, . . - )
for distances over 100 m. not |r_1volve Jacoblans, homogr_aphles, or fundamental nm,n_
and it does not require an estimate of the focus of expansion.
We demonstrate the technique on several indoor and outdoor
|. INTRODUCTION experiments, with slanted surfaces and dynamic occluding
The ability of a mobile robot to follow a desired trajectoryobjects, at distances over 100 m.
is necessary for many applications. For example, a courier
robot may need to deliver items from one office to another ifl- QUALITATIVE MAPPING FROM FEATURE COORDINATES
the same building, or even in a different building; a delver TO TURNING DIRECTION
robot may need to transport parts from one machine to anotheonsider a mobile robot equipped with a camera whose
in an industrial setting; a robot may need to travel along @ptical axis is parallel to the heading direction of the robo
prespecified route to give a tour of a facility; or a team dbuppose we wish to move the robot from location A to a
robots may need to follow the path taken earlier by a scopteviously encountered location B. The robot has access to
robot. a current imagel 4, taken at A, and amilestone imagéd/,
Traditional solutions to this problem involve building andaken previously at milestone B. Assuming there is enough
using a map of the environment [15] or using artificial landsverlap between the two images, then correspondence can be
marks [7]. An alternate approach is that of visual servoing, established automatically between feature points in tregas
which the motions of the robot are determined by comparingiging standard computer vision techniques. In this seatien
reference image with the current image taken by an on-boatftbw that a rather simple qualitative mapping exists batwee
video camera [9], [6]. These techniques generally requirettze resulting coordinates and the turning commands that are
Jacobian that relates the coordinates of points in the wornldcessary to guide the robot to the destination (milestone
with their projected image coordinates, or a homography tmcation). For ease of presentation, we will assume a pahol
fundamental matrix that relates coordinates between imageamera model, but a similar analysis holds when the imaging
Approaches of this kind generally make assumptions suchrags are curved due to lens distortion.
a flat ground plane [5], [10], [8], [11], a calibrated camera
[5], [3] (even uncalibrated systems often require some sdit
of calibration, e.g., for nonlinear lens distortion), or am Suppose that the robot is at A facing B, and tligtwas
made environment in which vertical straight lines [3], [8]taken at B from the same direction. As the robot moves from
[11] or the flat, parallel walls of a corridor [12] are presentA to B, the feature points will move in the image plane away
Some of the systems require two or more cameras [3], [14] fwom the principal point (the intersection of the opticalisax
omnidirectional cameras [2]. and the image plane) until they reach the locations of the
As Burschka and Hager [5] insightfully point out, thecorresponding feature points iig. This leads to an important
problem of following a predetermined path may not requirebservation:

When the robot is on the path
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promotional purposes or for creating new collective wortisresale or redistribution to servers or lists, or to reuseyacopyrighted
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feature point in the current image might exceed those of the
d]estination image, thus violating Constraint 1, as in theeaaf
feature 2 (ub| > |ug]). Thirdly, the feature point might violate
Tonstraint 2 by switching to the other side of the principal
fpoint, as in the case of feature 84(> 0 but v} < 0). In the
latter two cases the features not only indicate that thetroa®

'IIll;?]téatslznt’hg;%;?btor:elsi’nfjsgr::gré?ngteesa;ar!:ﬁleﬁot?ﬁaﬁou deviated from the true path, but they also indicate the toec
P ' y 9 P f the deviation — and hence the direction needed to turn in

need to be considered. (As seen in the experimental results o : )
S . . . fder to recover. This is summarized as follows:
this is not a fundamental assumption of the algorithm |t)self0 : i ;
‘s . ‘ o Observation 2:When a feature on the left (right) of the
The valuew; is the z-coordinate of theith feature point in L . : ; .
i . destination image violates Constraint 1 in the current iepag
the current image as the robot travels toward B, whifeis ;
. T ST the robot needs to turn left (right).
the coordinate of the point in the destination imalge All Observation 3:When a feature on the left (right) of the
coordinates are computed with respect to a coordinatersyst estination ima é violates Constraint 2 in the cSrrent ima
centered at the principal point, so thaf and u¢ are the the robot needsgto twrn right (left) 1ag
signed distances from the principal point. In the drawimg, t 9 '
dark circle coincides with the focal point of the camera and, when the robot has deviated angularly
indicates the robot’s position, while the dark arrow indésa
the robot’s direction. The image plane i at the current
location andr? at the destination.
As long as the robot is on the path and heading in the corr
direction, then two constraints hold:

Observation 1:If the robot is on the path from location A
to location B and is facing B, then the image coordinates
a feature point in/4 lie between the image coordinates of it
corresponding feature point ifz and the principal point.

The situation is shown in Figure 1. For simplicity o

Another situation to consider is when the robot is on
the correct path but has deviated from the correct direction
gé/t a certain angle, as shown in Figure 3. As before, three
possibilities exist: Both constraints might hold, as intfea
1; Constraint 1 might be violated, as in featurdZ | > |ud|);

lut] < |u§i (Constraint 1) 0{ Con)straint %might Ee vi;)lated, as inffer?tureug & 0 but

; B e d : ub > 0). According to the observations of the previous section,
signu;) = sign(u;). (Constraint 2) feature 2 indicates that the robot should turn right sinee th
The converse, of course, is not true: Satisfying these tf@ature is on the right side of the destination image. Sifyila
constraints does not guarantee that the robot is on the ptghture 3 also indicates that the robot should turn rightesin
with the correct heading. Thus, feature points for which tHe on the left side. Thankfully, the observations of lateratl
constraints hold provide no evidence about whether thetromgular deviation are consistent.

is moving successfully. On the other hand, features for whic . ,
one of the constraints is violated indicate that the robetise D- Qualitative control algorithm

to turn. Combining the observations of the previous subsections
_ yields an extremely simple control algorithm. For every-suc
B. When the robot has deviated laterally cessfully tracked feature pointwe compare the-coordinate

Now suppose that the robot has the correct heading Kuf) of the point in the current image with the coordinaig)(
has deviated laterally from the correct path, as shown @ its corresponding point in the destination image:
Figure 2. Applying the observation of the previous subsecti  « if u! > 0 andu¢ < 0, then turn right
three possibilities exist for any given feature point. Eitmoth . else iful < 0 andu¢ > 0, then turn left
constraints might hold as in the case of feature 1. Such a else ifu! > 0 andu! > u, then turn right
feature does not provide any positive evidence about whethee else iful < 0 andu! < u¢, then turn left
the robot is on course. Secondly, the coordinates of thee else do not turn
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Fig. 3. The robot is on the correct path but has deviated frioencbrrect Fig. 4. Qualitative control decision space.
direction by an anglex.

) ] ] ] ] o whereW is a window of pixels around the feature point and
This algorithm is depicted graphically in Figure 4. Thg _ [z y]T is a pixel in the image. This nonlinear error

robot continually moves forward and, depending upon the minimized by repeatedly solving its linearized version b
relationship between the two coordinates, the robot e'th?éylor series expansion:

turns slightly in one direction or the other, or it continues

moving forward without turning. The system is basically a Zd =e,

bang-bang control in which the robot is always turning a

constant amount to the right, a constant amount to the left,\ghere

not at all. Although one could extend this work by setting the

turning speed based upon the amount by which the constraints A Z ag(x)g” (x),

are violated, we have found a constant turning speed to be Xew

sufficient for our purposes. Because the system is unctdithra Z 9(x) [1(x) — J(X)],

the actual principal point is not known but is estimated eath Xew

crudely as the center of the image. As a result, values that

are close to the” axis are ignored to prevent the robot fromandg(x) = 19[I(x) + J(x)]/Ox is the spatial gradient of the

turning based upon insufficient evidence (we use a threshelterage image. These equations are identical to the sthndar

of 5 pixels away from the center). Lucas-Kanade equations [4], [13], [16] but are symmetric
The algorithm just described is for a single feature poinith respect to the two images. As in [13], [16], features are

In order to guide the robot successfully, it is necessary gmtomatically selected as those points in the image for hvhic

have multiple feature points distributed throughout baties both eigenvalues of are greater than a specified minimum

of the image. Each feature point votes for one of either “tuthreshold.

right”, “turn left”, or “do not turn”. Those in the latter cagjory

are ignored. LettingVz and N, be the number of votes for 5 Handling lighting changes

turning right and left, respectively, the final decision ¢han

be made based upon the following rule: The tracking algorithm just described relies on the well-

« if Ng— N >0, then turn right knowq ;onstant brightness ass_umptlt[m?] in which image
: intensities are constant over time. As a robot moves about
e €else if N, — Nr > 0, then turn left . . "
a real environment, however, the lighting conditions often
« else do not turn . 4 .
. . ] change from one location to another. This problem is par-
In practice the features are generally in agreement with €a¢.jarly acute in outdoor scenes during daylight hours mvhe

0]
I

other, so thatVp > N, or N > Nr. the robot moves in and out of shadows or when the sun
is occluded or disoccluded by clouds. In such scenarios the
I1l. TRACKING FEATURE POINTS standard algorithm often loses feature points prematuvedy

Feature points are automatically selected and trackeajusffeSeNt @ simple extension of the KLT algorithm to handle

the Kanade-Lucas-Tomasi (KLT) feature tracker [1], whicllumination changes. _ _ _
computes the displacemedt= [d, d,]7 that minimizes The residue equation defined above is augmented with

the sum of the squared differences between consecutivesimég "élative gaina and bias 3 describing the illumination
framesI and.J: relationship between the two images:

//W [I(X— g) —J(x+ g) dx, //W [I(x— g) - (aJ(x+ g) +g)]2dx,



Applying a Taylor series expansion as above yields similar 50

equations: asf
401
Z = Y 99" (), -
Xew T gl
e = > g UK - (aJ(x)+B)], & 25|
Xew g 20t
G 15} Robot reaches
whereg(x) = $9[I(x) + aJ (X)]/Ox. g7 the milestone
The valuesa and 5 are computed separately for each l:,
window by solving the following two equations: . ‘ ‘
0 2 4 6 8 10
E(I) = aE(J) + 03 image frame
E(I*) = o*E(J%), Fig. 5. A plot of the mean squared error between feature @oates in the

current image with those in the milestone image versus infegae, from
where E(I) is the mean intensity of the pixels in the windowan actual experiment.
and E(I?) is the mean squared intensity of the pixels in the
window; and similarly forE(.J) and E(J?).
B. Replay phase
In the replay phase, the robot is manually placed in approx-
When a dynamic object (e.g., a person walking) comé@sately the same initial location as that of the teachingsgha
into the view of the robot, two things may happen. FirsThe robot proceeds sequentially through the segments. At
feature points on the background may be lost due to occlusitime beginning of each segment, correspondence is estdlish
Because the algorithm treats all the features equally abdtween feature points in the current image and those of
because a new milestone image is taken frequently, this lake first teaching image of the segment. Then, as the feature
does not affect the performance of the algorithm in practigmints are tracked throughout the incoming images, theifeat
as long as the occlusion is fairly small (say, one-fourth @oordinates are compared with those of the milestone image
the image). If the occluding object is so large in the fiel@i.e., the last teaching image of the segment) in order to
of view that it causes a large number of feature points to letermine the turning direction for the robot. The robotate
lost, then there is not enough information for the algoritlem moves forward at a constant speed, turning to the left ot righ
continue. This problem can be solved by detecting the suddeinconstant speed, or not turning at all, depending upon the
loss of a large percentage of the features and commandmgput of the qualitative comparison of the feature points.
the robot to stop until it is able to reacquire the featureseon A remaining problem is to determine when the robot has
the object leaves the field of view. The second problem ieached a milestone position (i.e., the end of a segment) and
that feature points on the background may be erroneouskyeds to transition to the next segment. If there were neenois
tracked using foreground texture, in which case it is difficuor error, one could simply wait until the feature coordirsate
to recover. This problem is unlikely to occur because it wlouin the current image were equal to those in the milestone
require the texture of the foreground to be similar to that éfage. In real images, of course, this will not work. A natura
the background. solution to the problem would be to introduce a threshold and
then to wait until the mean squared error of the coordinates
passed below the threshold. In practice, however, we have
The approach involves a teaching phase and a replay phdsend it impossible to find a single threshold that works
) in all environments. The fact that the camera is completely
A. Teaching phase uncalibrated contributes to this difficulty. We insteadyreh
In the teaching phase, a person manually moves the rollwg fact that the mean squared error tends to decrease over
along a desired path to gather training data. The pathtisie as the robot approaches the milestone, and it increases
divided into a number of non-overlapping segments definadfterwards. The point at which the error starts to increase
by a constant amount of travel time. Within each segmeimdicates that the milestone has been reached, as shown in
feature points are automatically detected in the first imagégure 5. In our experiments, the monotonic nature of the
and tracked throughout subsequent images. Feature ploatts error function as the milestone is approached is reliablgs t
are successfully tracked throughout a segment are storeceimrabling this rather simple approach to work surprisingéw
a database for use in the replay phase. For each feature its
25 x 25 gray-level intensity pattern is stored, along with its
z-coordinate in the image for the first and last images of the The proposed algorithm was implemented in Visual C++
segment. The last image of each segment is a milestone image.a Dell Inspiron 700m laptop (1.6 GHz) controlling an
This is the extent of the learning that is performed in thactivMedia Pioneer P3-AT mobile robot with an inexpensive
teaching phase — no other information is stored. Logitech QuickCam Pro 4000 webcam mounted on the front.

B. Effects of dynamic objects

IV. ALGORITHM OVERVIEW

V. EXPERIMENTAL RESULTS
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Fig. 6. Top: The teaching and replay paths of the robot in an indoor
environment (our laboratory). The locatioasb, andc are used in Figure 8. T lef T iah
BoTToMm: Error versus distance traveled. urn left urn right

Fig. 7. Top: Two milestone images from the indoor experiment, with lad t
feature points overlaid. 8rToM: Two current images within each segment,
. . . as the robot moves toward the corresponding milestoneidogawith feature
In all experiments the image sequence was dividediriGec  points overlaid. The features outlined by a rectangle (yieethe electronic
segments, with up to 50 features being detected and trackegion of the paper) are the ones for which one of the cdnsdras violated.

; 29Pe In the left column, the features on the left half of the cutrienage tell the
throthom each segment. The Images were of 240. robot to turn left. In the right column, the features on thghtihalf of the

current image tell the robot to turn right.

A. Indoor experiments

, . ) ) ] defined as
The algorithm was tested in an indoor environment, includ-
i - : L+ul/ |ud] (ud <0)
ing our laboratory as well as a corridor of the hallway in our Y= { o ; ) (1)
building. The maximum speed of the robot during the teaching up/ |uf| (uif > 0)

phase was 100 mm/s and the turning speed was 4 degrRefice again the near unanimity in voting (a lone feature in
per second. Due to the delay caused by computational gmglvotes incorrectly to turn left). Also notice that, as tio®ot
response times, we found that the driving speed during thns (in (b) and (c)) the features move toward the OK region.
playback phase had to be smaller by a factor of approximatelyindoor environments present a particular challenge for fea
1.5 — 2.5 in order to avoid going off course, and the turningyre point tracking because of the lack of texture on theswall
speed had to be slightly smaller as well. As a result, thgccasionally the robot failed to remain on course due to lack
playback speeds were 40 mm/s and 3 degrees per sec@jidexture in the scene that caused feature points to be lost.
respectively. Figure 6 shows a typical run in which the rob@ifficulty was encountered primarily when the robot had to
successfully navigated between chairs and desks in our {afnh near the corner of a hallway containing no additional
along a 10 m path. Trajectories displayed in the figure wegpjects. We plan to address this problem by tracking vertica
computed by integrating the odometry readings (which ate nge features along with the feature points, whose cootdima

used by the algorithm). The maximum error wa85 m (for  can then be fed to the algorithm in the same manner.
80% of the path the error was less tha@ m), and the final

error was0.03 m. B. Outdoor experiments

Figure 7 shows the decision process at two time instantsDozens of experiments were also conducted outdoors, with
during the replay phase. In one case the robot is pointingtife robot driving along sidewalks and parking lots of a
the right of the current direction, so the features on the lafniversity campus. With more room to maneuver, the driving
half of the image violate either Constraint 1 or Constraint and turning speeds of the robot were increased to 750 mm/s
thereby indicating the need for the robot to turn left. In thend 6 degrees per second, respectively. As before, the speed
other case the features on the right half of the image viola@ring the replay phase were smaller: 350 mm/s and 4 degrees
one of the constraints, thereby indicating the need to tigitt.r per second. Figure 9 show the results of a typical run in which
In both cases notice the unanimity of the voting: Althougthe robot successfully followed a 140 m loop trajectory in a
many features simply plead ignorance, those features thatghrking lot. The maximum error was2 m, and the final error
cast a vote are in agreement. was1.3 m.

Figure 8 displays the decision process during three segmentAs mentioned before, the algorithm makes no assumption
of the experiment. For display purposes, the feature ceordbout the ground being flat. We have conducted several
nates are normalized so that the interyak [0, 1] indicates experiments — all successful — in which the robot navigates
“do not turn”, while larger valueg/(> 1) indicate “turn right”, up and down ramps with no modification to the algorithm.
and smaller valuesy( < 0) indicate “turn left”, wherey is Figure 10 shows some sample images from a 40 m experiment.
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Fig. 8. Top: The normalized feature coordinates of all the featurestgaoversus the image frame number for three segments ohttaii experiment.
Features below O vote for “turn left”, while those above levéir “turn right”. BotToM: A snapshot of the features from frame 2 of each segmenteplott
on the qualitative control decision space to show the itatsous decision. The three segments correspond to thts poib, andc from Figure 6.

tree cause the feature tracker to frequently fail on thegects

50t .
C. Different cameras

401 As an additional experiment illustrating the lack of cadibr

30t tion in the system, we ran two 50 m experiments outdoors. In

y(m)

the first run, we used the Logitech camera, as describedédefor
In the second run, we used an Imaging Source DFK21F04
Firewire camera with an 8.0 mm F1.2 lens. In each case the
same camera was used for both teaching and replay. Without
changing any parameters between runs, the algorithm was abl
60 to successfully follow the teaching path, as shown in Figizre

201

10

-20

V1. CONCLUSION
Fig. 9. Top: The teaching and replay paths of the robot in an outdoor

environment (parking lot). BTTOM: Error versus distance traveled. A simple and efficient algorithm has been presented for
enabling a mobile robot to follow a desired path using a gingl
off-the-shelf camera. Following a teach-replay approdbaf,

We have also found the algorithm to be insensitive t@bot navigates by performing a qualitative comparison of
dynamic objects as long as they do not cause too manyfefiture coordinates across the teaching and replay phases.
the feature points to be lost. Figure 11 displays sample @®ag\s such, the algorithm does not make use of the traditional
from an 80 m experiment in which a pedestrian walked by th®ncepts of Jacobians, homographies, fundamental mstrice
robot and later a van drove by it. In frames 265 and 684, ité¢ the focus of expansion. It also does not require any
evident that many features have been lost due to the ocolusi@libration (even lens calibration). Experimental resusn
caused by the dynamic object. Because the milestone imageh indoor and outdoor scenes demonstrate the effecisene
change frequently, however, the algorithm quickly receyas of the approach on trajectories over 100 m, along with its
can be seen by the new features in frames 283 and 692. robustness to effects such as dynamic objects and slanted

In our outdoor experiments, the algorithm failed occasiosurfaces.
ally. One cause of failure was the lack of contrast in the imag We believe that visual sensing will be essential for mobile
when the robot was run at dusk, a problem which was no doubbots to progress in the direction of increased robustness
made more acute because of the limited dynamic range of tieeluced cost, and reduced power consumption. Moreover, if
CMOS sensor in the webcam. Another cause of failure wasbots can be made to use computationally efficient algoisth
the lack of unique texture in trees when those objects took apd off-the-shelf cameras with minimal setup (e.g., no cal-
a large percentage of the image. Although trees contain mubhation), then the door is opened for robots to be widely
texture, the similarity in appearance of features througlao deployed (e.g., multiple inexpensive coordinating ropotbe



frame 122

frame 322 frame 350

Fig. 10. Sample image frames from a sequence in which the toieled
up and down an outdoor ramp.

frame 255

frame 283

frame 684 frame 692

Fig. 11. Sample image frames from a sequence containingnuignabjects.
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Fig. 12.  Teaching and replay paths for the robot using twdedint
uncalibrated cameras, with the same system parameta&rsT: Umaging
Source DFK 21F04 Firewire camera)d¥T: Logitech QuickCam Pro 4000
USB webcam.

algorithm described in this paper is one small step in this
direction. This algorithm is somewhat simplistic and lieuit

in its view of the world, only enabling a robot to follow a pre-
determined trajectory, and only then when sufficient featur
points are successfully tracked. In future research we f@an
continue this line of inquiry to develop robust techniques t
take advantage of the rich information available from video
to solve problems such as obstacle avoidance and global
localization.
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