
Qualitative Vision-Based Mobile Robot Navigation
Zhichao Chen and Stanley T. Birchfield

Electrical and Computer Engineering Department
Clemson University

Clemson, South Carolina 29634
Email: {zhichac,stb}@clemson.edu

Abstract— We present a novel, simple algorithm for mobile
robot navigation. Using a teach-replay approach, the robotis
manually led along a desired path in a teaching phase, then
the robot autonomously follows that path in a replay phase.
The technique requires a single off-the-shelf, forward-looking
camera with no calibration (including no calibration for le ns
distortion). Feature points are automatically detected and tracked
throughout the image sequence, and the feature coordinatesin
the replay phase are compared with those computed previously
in the teaching phase to determine the turning commands for the
robot. The algorithm is entirely qualitative in nature, req uiring
no map of the environment, no image Jacobian, no homography,
no fundamental matrix, and no assumption about a flat ground
plane. Experimental results demonstrate the capability ofau-
tonomous navigation in both indoor and outdoor environments,
on both flat and slanted surfaces, with dynamic occluding objects,
for distances over 100 m.

IEEE International Conference on
Robotics and Automation (ICRA)
Orlando, Florida, May 2006

c©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works, must be obtained from the IEEE.

I. I NTRODUCTION

The ability of a mobile robot to follow a desired trajectory
is necessary for many applications. For example, a courier
robot may need to deliver items from one office to another in
the same building, or even in a different building; a delivery
robot may need to transport parts from one machine to another
in an industrial setting; a robot may need to travel along a
prespecified route to give a tour of a facility; or a team of
robots may need to follow the path taken earlier by a scout
robot.

Traditional solutions to this problem involve building and
using a map of the environment [15] or using artificial land-
marks [7]. An alternate approach is that of visual servoing,in
which the motions of the robot are determined by comparing a
reference image with the current image taken by an on-board
video camera [9], [6]. These techniques generally require a
Jacobian that relates the coordinates of points in the world
with their projected image coordinates, or a homography or
fundamental matrix that relates coordinates between images.
Approaches of this kind generally make assumptions such as
a flat ground plane [5], [10], [8], [11], a calibrated camera
[5], [3] (even uncalibrated systems often require some sort
of calibration, e.g., for nonlinear lens distortion), or a man-
made environment in which vertical straight lines [3], [8],
[11] or the flat, parallel walls of a corridor [12] are present.
Some of the systems require two or more cameras [3], [14] or
omnidirectional cameras [2].

As Burschka and Hager [5] insightfully point out, the
problem of following a predetermined path may not require

a complicated approach. Intuitively, the vastly overdetermined
nature of the problem (thousands of pixels in an image versus
one turning command output) would seem to indicate that a
simpler method might be feasible. In this paper we present
a simple technique that uses a single, off-the-shelf camera
attached to the front of the robot. The technique follows the
teach-replay approach [5] in which the robot is manually led
through the path once during a teaching phase and then follows
the path autonomously during the replay phase. Without any
calibration (even calibration for lens distortion), the robot is
able to follow the path by making onlyqualitativecomparisons
between the feature coordinates computed during the teaching
phase with those computed during replay. The technique does
not involve Jacobians, homographies, or fundamental matrices,
and it does not require an estimate of the focus of expansion.
We demonstrate the technique on several indoor and outdoor
experiments, with slanted surfaces and dynamic occluding
objects, at distances over 100 m.

II. QUALITATIVE MAPPING FROM FEATURE COORDINATES

TO TURNING DIRECTION

Consider a mobile robot equipped with a camera whose
optical axis is parallel to the heading direction of the robot.
Suppose we wish to move the robot from location A to a
previously encountered location B. The robot has access to
a current imageIA, taken at A, and amilestone imageIB,
taken previously at milestone B. Assuming there is enough
overlap between the two images, then correspondence can be
established automatically between feature points in the images
using standard computer vision techniques. In this sectionwe
show that a rather simple qualitative mapping exists between
the resulting coordinates and the turning commands that are
necessary to guide the robot to the destination (milestone
location). For ease of presentation, we will assume a pinhole
camera model, but a similar analysis holds when the imaging
rays are curved due to lens distortion.

A. When the robot is on the path

Suppose that the robot is at A facing B, and thatIB was
taken at B from the same direction. As the robot moves from
A to B, the feature points will move in the image plane away
from the principal point (the intersection of the optical axis
and the image plane) until they reach the locations of the
corresponding feature points inIB . This leads to an important
observation:

Fig. 1. The robot is on the path with the correct heading direction.

Observation 1:If the robot is on the path from location A
to location B and is facing B, then the image coordinates of
a feature point inIA lie between the image coordinates of its
corresponding feature point inIB and the principal point.

The situation is shown in Figure 1. For simplicity of
illustration, the robot is assumed to be parallel to the ground
plane, so that only the image coordinates parallel to the ground
need to be considered. (As seen in the experimental results,
this is not a fundamental assumption of the algorithm itself.)
The valueut

i is the x-coordinate of theith feature point in
the current image as the robot travels toward B, whileud

i is
the coordinate of the point in the destination imageIB . All
coordinates are computed with respect to a coordinate system
centered at the principal point, so thatut

i and ud
i are the

signed distances from the principal point. In the drawing, the
dark circle coincides with the focal point of the camera and
indicates the robot’s position, while the dark arrow indicates
the robot’s direction. The image plane isπt at the current
location andπd at the destination.

As long as the robot is on the path and heading in the correct
direction, then two constraints hold:

|ut
i| < |ud

i | (Constraint 1)

sign(ut
i) = sign(ud

i). (Constraint 2)

The converse, of course, is not true: Satisfying these two
constraints does not guarantee that the robot is on the path
with the correct heading. Thus, feature points for which the
constraints hold provide no evidence about whether the robot
is moving successfully. On the other hand, features for which
one of the constraints is violated indicate that the robot needs
to turn.

B. When the robot has deviated laterally

Now suppose that the robot has the correct heading but
has deviated laterally from the correct path, as shown in
Figure 2. Applying the observation of the previous subsection,
three possibilities exist for any given feature point. First, both
constraints might hold as in the case of feature 1. Such a
feature does not provide any positive evidence about whether
the robot is on course. Secondly, the coordinates of the

Fig. 2. The robot is facing the correct direction but has deviated laterally
from the correct path.

feature point in the current image might exceed those of the
destination image, thus violating Constraint 1, as in the case of
feature 2 (|ut

2
| > |ud

2
|). Thirdly, the feature point might violate

Constraint 2 by switching to the other side of the principal
point, as in the case of feature 3 (ud

3
> 0 but ut

3
< 0). In the

latter two cases the features not only indicate that the robot has
deviated from the true path, but they also indicate the direction
of the deviation — and hence the direction needed to turn in
order to recover. This is summarized as follows:

Observation 2:When a feature on the left (right) of the
destination image violates Constraint 1 in the current image,
the robot needs to turn left (right).

Observation 3:When a feature on the left (right) of the
destination image violates Constraint 2 in the current image,
the robot needs to turn right (left).

C. When the robot has deviated angularly

Another situation to consider is when the robot is on
the correct path but has deviated from the correct direction
by a certain angle, as shown in Figure 3. As before, three
possibilities exist: Both constraints might hold, as in feature
1; Constraint 1 might be violated, as in feature 2 (|ut

2
| > |ud

2
|);

or Constraint 2 might be violated, as in feature 3 (ud
3

< 0 but
ut

3
> 0). According to the observations of the previous section,

feature 2 indicates that the robot should turn right since the
feature is on the right side of the destination image. Similarly,
feature 3 also indicates that the robot should turn right since it
is on the left side. Thankfully, the observations of lateraland
angular deviation are consistent.

D. Qualitative control algorithm

Combining the observations of the previous subsections
yields an extremely simple control algorithm. For every suc-
cessfully tracked feature pointi, we compare thex-coordinate
(ut

i) of the point in the current image with the coordinate (ud
i)

of its corresponding point in the destination image:

• if ut
i > 0 andud

i < 0, then turn right
• else if ut

i < 0 andud
i > 0, then turn left

• else if ut
i > 0 andut

i > ud
i , then turn right

• else if ut
i < 0 andut

i < ud
i , then turn left

• else do not turn

Fig. 3. The robot is on the correct path but has deviated from the correct
direction by an angleα.

This algorithm is depicted graphically in Figure 4. The
robot continually moves forward and, depending upon the
relationship between the two coordinates, the robot either
turns slightly in one direction or the other, or it continues
moving forward without turning. The system is basically a
bang-bang control in which the robot is always turning a
constant amount to the right, a constant amount to the left, or
not at all. Although one could extend this work by setting the
turning speed based upon the amount by which the constraints
are violated, we have found a constant turning speed to be
sufficient for our purposes. Because the system is uncalibrated
the actual principal point is not known but is estimated rather
crudely as the center of the image. As a result, values that
are close to theud axis are ignored to prevent the robot from
turning based upon insufficient evidence (we use a threshold
of 5 pixels away from the center).

The algorithm just described is for a single feature point.
In order to guide the robot successfully, it is necessary to
have multiple feature points distributed throughout both sides
of the image. Each feature point votes for one of either “turn
right”, “turn left”, or “do not turn”. Those in the latter category
are ignored. LettingNR andNL be the number of votes for
turning right and left, respectively, the final decision canthen
be made based upon the following rule:

• if NR − NL > 0, then turn right
• else if NL − NR > 0, then turn left
• else do not turn

In practice the features are generally in agreement with each
other, so thatNR ≫ NL or NL ≫ NR.

III. T RACKING FEATURE POINTS

Feature points are automatically selected and tracked using
the Kanade-Lucas-Tomasi (KLT) feature tracker [1], which
computes the displacementd = [dx dy]T that minimizes
the sum of the squared differences between consecutive image
framesI andJ :

∫∫

W

[

I(x −
d
2
) − J(x +

d
2
)

]2

d x,

Fig. 4. Qualitative control decision space.

whereW is a window of pixels around the feature point and
x = [x y]T is a pixel in the image. This nonlinear error
is minimized by repeatedly solving its linearized version by
Taylor series expansion:

Zd = e,

where

Z =
∑

x∈W

g(x)gT (x),

e =
∑

x∈W

g(x) [I(x) − J(x)] ,

andg(x) = 1

2
∂[I(x) + J(x)]/∂x is the spatial gradient of the

average image. These equations are identical to the standard
Lucas-Kanade equations [4], [13], [16] but are symmetric
with respect to the two images. As in [13], [16], features are
automatically selected as those points in the image for which
both eigenvalues ofZ are greater than a specified minimum
threshold.

A. Handling lighting changes

The tracking algorithm just described relies on the well-
known constant brightness assumption[17] in which image
intensities are constant over time. As a robot moves about
a real environment, however, the lighting conditions often
change from one location to another. This problem is par-
ticularly acute in outdoor scenes during daylight hours when
the robot moves in and out of shadows or when the sun
is occluded or disoccluded by clouds. In such scenarios the
standard algorithm often loses feature points prematurely. We
present a simple extension of the KLT algorithm to handle
illumination changes.

The residue equation defined above is augmented with
a relative gainα and biasβ describing the illumination
relationship between the two images:

∫∫

W

[

I(x −
d
2
) −

(

αJ(x +
d
2
) + β

)]2

d x.

Applying a Taylor series expansion as above yields similar
equations:

Z =
∑

x∈W

g(x)gT (x),

e =
∑

x∈W

g(x) [I(x) − (αJ(x) + β)] ,

whereg(x) = 1

2
∂[I(x) + αJ(x)]/∂x.

The valuesα and β are computed separately for each
window by solving the following two equations:

E(I) = αE(J) + β

E(I2) = α2E(J2),

whereE(I) is the mean intensity of the pixels in the window
andE(I2) is the mean squared intensity of the pixels in the
window; and similarly forE(J) andE(J2).

B. Effects of dynamic objects

When a dynamic object (e.g., a person walking) comes
into the view of the robot, two things may happen. First,
feature points on the background may be lost due to occlusion.
Because the algorithm treats all the features equally and
because a new milestone image is taken frequently, this loss
does not affect the performance of the algorithm in practice
as long as the occlusion is fairly small (say, one-fourth of
the image). If the occluding object is so large in the field
of view that it causes a large number of feature points to be
lost, then there is not enough information for the algorithmto
continue. This problem can be solved by detecting the sudden
loss of a large percentage of the features and commanding
the robot to stop until it is able to reacquire the features once
the object leaves the field of view. The second problem is
that feature points on the background may be erroneously
tracked using foreground texture, in which case it is difficult
to recover. This problem is unlikely to occur because it would
require the texture of the foreground to be similar to that of
the background.

IV. A LGORITHM OVERVIEW

The approach involves a teaching phase and a replay phase.

A. Teaching phase

In the teaching phase, a person manually moves the robot
along a desired path to gather training data. The path is
divided into a number of non-overlapping segments defined
by a constant amount of travel time. Within each segment,
feature points are automatically detected in the first image
and tracked throughout subsequent images. Feature points that
are successfully tracked throughout a segment are stored in
a database for use in the replay phase. For each feature its
25 × 25 gray-level intensity pattern is stored, along with its
x-coordinate in the image for the first and last images of the
segment. The last image of each segment is a milestone image.
This is the extent of the learning that is performed in the
teaching phase — no other information is stored.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

image frame

m
ea

n
sq

ua
re

d
er

ro
r

Robot reaches
the milestone

Fig. 5. A plot of the mean squared error between feature coordinates in the
current image with those in the milestone image versus imageframe, from
an actual experiment.

B. Replay phase

In the replay phase, the robot is manually placed in approx-
imately the same initial location as that of the teaching phase.
The robot proceeds sequentially through the segments. At
the beginning of each segment, correspondence is established
between feature points in the current image and those of
the first teaching image of the segment. Then, as the feature
points are tracked throughout the incoming images, the feature
coordinates are compared with those of the milestone image
(i.e., the last teaching image of the segment) in order to
determine the turning direction for the robot. The robot always
moves forward at a constant speed, turning to the left or right
at constant speed, or not turning at all, depending upon the
output of the qualitative comparison of the feature points.

A remaining problem is to determine when the robot has
reached a milestone position (i.e., the end of a segment) and
needs to transition to the next segment. If there were no noise
or error, one could simply wait until the feature coordinates
in the current image were equal to those in the milestone
image. In real images, of course, this will not work. A natural
solution to the problem would be to introduce a threshold and
then to wait until the mean squared error of the coordinates
passed below the threshold. In practice, however, we have
found it impossible to find a single threshold that works
in all environments. The fact that the camera is completely
uncalibrated contributes to this difficulty. We instead rely on
the fact that the mean squared error tends to decrease over
time as the robot approaches the milestone, and it increases
afterwards. The point at which the error starts to increase
indicates that the milestone has been reached, as shown in
Figure 5. In our experiments, the monotonic nature of the
error function as the milestone is approached is reliable, thus
enabling this rather simple approach to work surprisingly well.

V. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in Visual C++
on a Dell Inspiron 700m laptop (1.6 GHz) controlling an
ActivMedia Pioneer P3-AT mobile robot with an inexpensive
Logitech QuickCam Pro 4000 webcam mounted on the front.

0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

x(m)

y(
m

)

Teaching
Replay

Desk
Chair

Chair Chair Chair

Chair Chair Chair

Chair Chair Chair Chair

Desk

Desk
Desk

Chair

Desk

Chair Cabinet

Door

Chair

a b c

Fig. 6. TOP: The teaching and replay paths of the robot in an indoor
environment (our laboratory). The locationsa, b, andc are used in Figure 8.
BOTTOM: Error versus distance traveled.

In all experiments the image sequence was divided into0.8 sec
segments, with up to 50 features being detected and tracked
throughout each segment. The images were of size320×240.

A. Indoor experiments

The algorithm was tested in an indoor environment, includ-
ing our laboratory as well as a corridor of the hallway in our
building. The maximum speed of the robot during the teaching
phase was 100 mm/s and the turning speed was 4 degrees
per second. Due to the delay caused by computational and
response times, we found that the driving speed during the
playback phase had to be smaller by a factor of approximately
1.5 − 2.5 in order to avoid going off course, and the turning
speed had to be slightly smaller as well. As a result, the
playback speeds were 40 mm/s and 3 degrees per second,
respectively. Figure 6 shows a typical run in which the robot
successfully navigated between chairs and desks in our lab
along a 10 m path. Trajectories displayed in the figure were
computed by integrating the odometry readings (which are not
used by the algorithm). The maximum error was0.35 m (for
80% of the path the error was less than0.2 m), and the final
error was0.03 m.

Figure 7 shows the decision process at two time instants
during the replay phase. In one case the robot is pointing to
the right of the current direction, so the features on the left
half of the image violate either Constraint 1 or Constraint 2,
thereby indicating the need for the robot to turn left. In the
other case the features on the right half of the image violate
one of the constraints, thereby indicating the need to turn right.
In both cases notice the unanimity of the voting: Although
many features simply plead ignorance, those features that do
cast a vote are in agreement.

Figure 8 displays the decision process during three segments
of the experiment. For display purposes, the feature coordi-
nates are normalized so that the intervaly ∈ [0, 1] indicates
“do not turn”, while larger values (y > 1) indicate “turn right”,
and smaller values (y < 0) indicate “turn left”, wherey is

Turn left Turn right

Fig. 7. TOP: Two milestone images from the indoor experiment, with all the
feature points overlaid. BOTTOM: Two current images within each segment,
as the robot moves toward the corresponding milestone location, with feature
points overlaid. The features outlined by a rectangle (green in the electronic
version of the paper) are the ones for which one of the constraints is violated.
In the left column, the features on the left half of the current image tell the
robot to turn left. In the right column, the features on the right half of the
current image tell the robot to turn right.

defined as

y =

{

1 + ut
i/

∣

∣ud
i

∣

∣ (ud
i < 0)

ut
i/

∣

∣ud
i

∣

∣ (ud
i > 0)

. (1)

Notice again the near unanimity in voting (a lone feature in
(b) votes incorrectly to turn left). Also notice that, as therobot
turns (in (b) and (c)) the features move toward the OK region.

Indoor environments present a particular challenge for fea-
ture point tracking because of the lack of texture on the walls.
Occasionally the robot failed to remain on course due to lack
of texture in the scene that caused feature points to be lost.
Difficulty was encountered primarily when the robot had to
turn near the corner of a hallway containing no additional
objects. We plan to address this problem by tracking vertical
line features along with the feature points, whose coordinates
can then be fed to the algorithm in the same manner.

B. Outdoor experiments

Dozens of experiments were also conducted outdoors, with
the robot driving along sidewalks and parking lots of a
university campus. With more room to maneuver, the driving
and turning speeds of the robot were increased to 750 mm/s
and 6 degrees per second, respectively. As before, the speeds
during the replay phase were smaller: 350 mm/s and 4 degrees
per second. Figure 9 show the results of a typical run in which
the robot successfully followed a 140 m loop trajectory in a
parking lot. The maximum error was2.2 m, and the final error
was1.3 m.

As mentioned before, the algorithm makes no assumption
about the ground being flat. We have conducted several
experiments — all successful — in which the robot navigates
up and down ramps with no modification to the algorithm.
Figure 10 shows some sample images from a 40 m experiment.

1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

Frame

y OK

Turn right

Turn left

1 2 3 4 5

−2

0

2

4

6

8

Frame

y

OK

Turn left

Turn right

1 2 3 4 5

−8

−6

−4

−2

0

2
1

Frame

y

OK

Turn left

Turn right

−100 −50 0 50 100

ud

−100

−80

−40

−20

20

40

80

100 ut

Turn right

OK

OK
Turn left

−100 −80 −60 −40 −20 20 40 60 80 100

ud

−100

−80

−40

−20

0

20

40

80

100 ut

OK

OK

Turn right

Turn left

−100 −80 −60 −40 −20 20 40 60 80 100

ud

−100

−80

−40

−20

20

40

80

100 ut

OK

Turn right

Turn left
OK

(a) Do not turn (b) Turn right (c) Turn left

Fig. 8. TOP: The normalized feature coordinates of all the features plotted versus the image frame number for three segments of the indoor experiment.
Features below 0 vote for “turn left”, while those above 1 vote for “turn right”. BOTTOM: A snapshot of the features from frame 2 of each segment plotted
on the qualitative control decision space to show the instantaneous decision. The three segments correspond to the points a, b, andc from Figure 6.

−20 0 20 40 60

0

10

20

30

40

50

x(m)

y(
m

)

Teaching
Replay

start
end

Fig. 9. TOP: The teaching and replay paths of the robot in an outdoor
environment (parking lot). BOTTOM: Error versus distance traveled.

We have also found the algorithm to be insensitive to
dynamic objects as long as they do not cause too many of
the feature points to be lost. Figure 11 displays sample images
from an 80 m experiment in which a pedestrian walked by the
robot and later a van drove by it. In frames 265 and 684, it is
evident that many features have been lost due to the occlusion
caused by the dynamic object. Because the milestone images
change frequently, however, the algorithm quickly recovers, as
can be seen by the new features in frames 283 and 692.

In our outdoor experiments, the algorithm failed occasion-
ally. One cause of failure was the lack of contrast in the image
when the robot was run at dusk, a problem which was no doubt
made more acute because of the limited dynamic range of the
CMOS sensor in the webcam. Another cause of failure was
the lack of unique texture in trees when those objects took up
a large percentage of the image. Although trees contain much
texture, the similarity in appearance of features throughout a

tree cause the feature tracker to frequently fail on these objects.

C. Different cameras

As an additional experiment illustrating the lack of calibra-
tion in the system, we ran two 50 m experiments outdoors. In
the first run, we used the Logitech camera, as described before.
In the second run, we used an Imaging Source DFK21F04
Firewire camera with an 8.0 mm F1.2 lens. In each case the
same camera was used for both teaching and replay. Without
changing any parameters between runs, the algorithm was able
to successfully follow the teaching path, as shown in Figure12.

VI. CONCLUSION

A simple and efficient algorithm has been presented for
enabling a mobile robot to follow a desired path using a single
off-the-shelf camera. Following a teach-replay approach,the
robot navigates by performing a qualitative comparison of
feature coordinates across the teaching and replay phases.
As such, the algorithm does not make use of the traditional
concepts of Jacobians, homographies, fundamental matrices,
or the focus of expansion. It also does not require any
calibration (even lens calibration). Experimental results on
both indoor and outdoor scenes demonstrate the effectiveness
of the approach on trajectories over 100 m, along with its
robustness to effects such as dynamic objects and slanted
surfaces.

We believe that visual sensing will be essential for mobile
robots to progress in the direction of increased robustness,
reduced cost, and reduced power consumption. Moreover, if
robots can be made to use computationally efficient algorithms
and off-the-shelf cameras with minimal setup (e.g., no cal-
ibration), then the door is opened for robots to be widely
deployed (e.g., multiple inexpensive coordinating robots). The

frame 1 frame 59

frame 122 frame 240

frame 322 frame 350

Fig. 10. Sample image frames from a sequence in which the robot traveled
up and down an outdoor ramp.

frame 255 frame 265

frame 283 frame 663

frame 684 frame 692

Fig. 11. Sample image frames from a sequence containing dynamic objects.

0 5 10 15
−40

−30

−20

−10

0

x(m)

y(
m

)

Teaching
Replay

start

end

0 5 10 15
−40

−30

−20

−10

0

x(m)

y(
m

)

Teaching
Replay

start

end

Fig. 12. Teaching and replay paths for the robot using two different
uncalibrated cameras, with the same system parameters. LEFT: Imaging
Source DFK 21F04 Firewire camera, RIGHT: Logitech QuickCam Pro 4000
USB webcam.

algorithm described in this paper is one small step in this
direction. This algorithm is somewhat simplistic and limited
in its view of the world, only enabling a robot to follow a pre-
determined trajectory, and only then when sufficient feature
points are successfully tracked. In future research we planto
continue this line of inquiry to develop robust techniques to
take advantage of the rich information available from video
to solve problems such as obstacle avoidance and global
localization.

REFERENCES

[1] S. Birchfield. KLT: An implementation of the Kanade-Lucas-Tomasi
feature tracker, http://www.ces.clemson.edu/∼stb/klt/.

[2] G. Adorni, S. Cagnoni, M. Mordonini, and A. Sgorbissa. Omnidirec-
tional stereo systems for robot navigation. InProceedings of the Fourth
Workshop on Omnidirectional Vision (Omnivis), 2003.

[3] S. Atiya and G. D. Hager. Real-time vision-based robot localization.
IEEE Trans. on Robotics and Automation, 9(6):785–799, Dec. 1993.

[4] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying
framework. Intl. Journal of Computer Vision, 56(3):221–255, 2004.

[5] D. Burschka and G. Hager. Vision-based control of mobilerobots. In
Proceedings of the International Conference on Robotics and Automa-
tion, pages 1707–1713, May 2001.

[6] F. Chaumette and E. Malis. 2 1/2-D visual servoing: A possible solution
to improve image-based and position-based visual servoings. In Pro-
ceedings of the International Conference on Robotics and Automation,
pages 630–635, Apr. 2000.

[7] J. M. Evans. HelpMate: An autonomous mobile robot courier for
hospitals. InProceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1695–1700, 1994.

[8] J. J. Guerrero and C. Sagues. Uncalibrated vision based on lines for
robot navigation.Mechatronics, 11(6):759–777, 2001.

[9] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo control.
IEEE Transactions on Robotics and Automation, 12(5):651–670, 1996.

[10] B. Liang and N. Pears. Visual navigation using planar homographies.
In Proc. of the IAPR Intl. Conference on Pattern Recognition, 2002.

[11] C. Sagues and J. J. Guerrero. Visual correction for mobile robot homing.
Robotics and Autonomous Systems, 50(1):41–49, 2005.

[12] J. Santos-Victor, G. Sandini, F. Curotto, and S. Garibaldi. Divergent
stereo in autonomous navigation: from bees to robots.International
Journal of Computer Vision, 14(2):159–177, Mar. 1995.

[13] J. Shi and C. Tomasi. Good features to track. InProc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, pages 593–600, 1994.

[14] Y. Shimizu and J. Sato. Visual navigation of uncalibrated mobile robots
from uncalibrated stereo pointers. InProc. of the IAPR Intl. Conference
on Pattern Recognition, volume 1, pages 1346–1349, 2000.

[15] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer andB. Nebel,
editors,Exploring Artificial Intelligence in the New Millenium. Morgan
Kaufmann, 2002.

[16] C. Tomasi and T. Kanade. Detection and tracking of pointfeatures.
Technical Report CMU-CS-91-132, Carnegie Mellon University, Apr.
1991.

[17] E. Trucco and A. Verri. Introductory Techniques for 3D Computer
Vision. Upper Saddle River, NJ: Prentice Hall, 1998.

