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Abstract— We present an algorithm for automatically un-
folding a piece of clothing. A piece of laundry is pulled in
different directions at various points of the cloth in order to
flatten the laundry. The features of the cloth are extracted and
calculated to determine a valid location and orientation in which
to interact with it. The features include the peak region, corner
locations, and continuity / discontinuity of the cloth. In this
paper we present a two-stage algorithm, introducing a novel
solution to the unfolding / flattening problem using interactive
perception. Simulations using 3D simulation software, and
experiments with robot hardware demonstrate the ability of the
algorithm to flatten pieces of laundry using different starting
configurations. These results show that, at most, the algorithm
flattens out a piece of cloth from 11.1% to 95.6% of the
canonical configuration.

I. INTRODUCTION

Laundry is a common household chore that is a difficult
problem to automate. The process of “doing the laundry”
consists of several steps: handling, washing, drying, separat-
ing/isolating, classifying, unfolding/flattening, folding, and
putting it away into a predetermined drawer or storage unit.
Figure 1 gives a high level flow chart on these various steps.
Several researchers have worked in the past on handling [1]
[2] [3] [4] [5] [6] [7] [8], separating/isolating [8] [9] [10]
[11] [12], and classifying [6] [9] [11] [12] [13] clothes.

Folding, in particular, has received significant attentionas
of late [14] [15] [16]. Various researchers are developing
folding algorithms and machines at the lower end of the
laundry process (i.e. folding clothing). Keio University’s
“Foldy” mobile robot has demonstrated the ability to fold
a shirt based on high-level user input.1 Similar research at
other universities aimed at folding manipulation has made
progress on folding T-shirts,, towels [14], pants / shirts [16],
and origami [17]. Others have developed cardboard machines
to fold T-shirts.2 These existing systems are invariably de-
pendent on a starting point of having the items identified
and laid out flat in a standard configuration prior to manip-
ulation. Cusano-Towner et al. [18] were aimed at solving
the unfolding/flattening problem, that is, to flatten a piece
of crumpled clothing by implementing a disambiguation
phase and a reconfiguration phase. In this paper we present
algorithms, simulations, and experiments with robot hard-
ware, introducing a novel solution to the unfolding/flattening
problem. In this paper, we have designed a model/algorithm
to unfold/flatten clothes after they have already been labeled
as a shirt, shorts, etc. through isolation and classification as

1http://inventorspot.com/articles/laundryfoldingrobot learnsjob 34327
2http://www.metacafe.com/watch/1165247/clothesfolding machine

Fig. 1. Overview of the laundry process, adapted from [10]. GREEN areas
represent parts of the process that have already been explored in previous
work, while the RED area represents the part of the process that is the focus
of this paper.

in [9]. Figure 2 shows the robot system that was used in
testing our approach.

II. APPROACH

A. Overview

The overall goal of this paper is to define a model /
algorithm that describes how to unfold laundry into a flat
canonical position. The algorithm of the cloth model contains
two phases. In the first phase, initial wrinkles and/or foldsare
removed without using any depth information (and hence can
be accomplished with a single overhead camera). The second
phase implements the proposed model, explained below, to
remove more difficult folds using depth information. Each
component of the model will be explained in further detail
below. We use the corners of the article as initial locations
for possible grasp points. Corners are used based on an
assumption that if the corners are lying flat on the table
in opposite orientation and/or are evenly spaced apart, then
the article is closer to the canonical (desired) position. The



Fig. 2. The robot system used for flattening a piece of clothing, in this case
a washcloth: One PUMA manipulator and one Logitech Quickcam 4000.

Fig. 3. Process of the first phase to unfolding / flattening laundry. Each
step of the process is numbered along with the orientation that is used to
transform one configuration into another. In each step the outer edge of the
piece of clothing is grasped and pulled away from the center of the object.
This is an illustrative example only.

idea behind obtaining a goal orientation/form is to remove all
peaks (i.e. topologically high areas) and decrease the vertical
size iteratively into a uniform layout. Several factors are
considered to characterize a method in flattening an article
of clothing. In this paper, we use peak ridges, continuity of
a surface, and corner locations.

B. First Phase

The purpose of the first phase of flattening a piece of
clothing is to remove any minor wrinkles and/or folds. This
phase provides a better configuration for the second phase
to start with instead of the initial configuration. In the first
phase, the robot moves move around the cloth counter-
clockwise, pulling at individual corners everyd degrees (we
set d to be 45). The cloth is grasped at the edge of the
clothing (determined by background subtraction) and pulled
away from the centroid. Figure 3 illustrates the process of
the first phase, which consists of the first eight steps of the
algorithm.

C. Second Phase

The second phase uses depth information to locate possible
folds in the cloth, and to find grasp points and directions to
enable the folds to be removed. Each iteration of this phase
involves six steps.

Fig. 4. Depth image (left) and peak ridge (right) of an unfolded washcloth.
In the depth image, brighter points are closer to the sensor (higher above
the table). The peak ridge contains points within 10% of, andcontiguous
with, the peak.

1) Peak Ridge:The peak ridge is a binary map computed
from the depth image as follows:

PR(x, y) =

{

1, if E(x, y) ≥ 0.9maxx′,y′ E(x′, y′)
0, otherwise

,

(1)
where E(x, y) is the value of the depth image for pixel
(x, y), andmaxx′,y′ E(x′, y′) is the maximum value in the
depth image, which we call the peak. In the depth image,
larger (brighter) points are farther from the table, so the peak
is the highest point above the table. This equation locates
the area(s) containing pixels whose depth is within10%
of the peak. The area that matches this criterion and also
includes the maximum value is the peak ridge. The function
computes an(xC , yC) point (centroid) and the orientation
θmaj/θmin(major/minor vectors) of the peak ridge. Figure
4 illustrates the original depth image of the object and the
binary mask of the peak ridge of the object.

2) Corner Locations:To detect corners along the edge of
the cloth, we run the Harris corner detector on the binary
image that results from thresholding the depth image so that
points on the table are zero while points on the cloth are
one. The corner locations are then the locations of these
Harris corners, so thatCL(x, y) = 1 if a Harris corner was
found at location(x, y), and 0 otherwise. The procedure finds
locations of all detected corners and returns the locationsin
terms of position(xN , yN ) and orientationθN of the corner.
Some corners will be located on the peak ridge, while others
will be located in the other non-peak regions, see Figure 5
(left).

3) Discontinuity Function: Discontinuities in the depth
image are stored in a binary array computed as follows:

DC(x, y) =

{

1, if B3×3(x, y)
⋂

B5×5 = 1
0, otherwise

, (2)

where B3×3(x, y) tests for sharp increases/decreases in
values of the depth image,B5×5(x, y) tests for sharp in-
creases/decreases in the slope of the depth image, and

⋂

is
the logicalAND operator. More specifically,B3×3(x, y) = 1
if max(|E(x + 1, y)−E(x− 1, y)|, |E(x, y + 1)−E(x, y−
1)|) > th, where th = 5 is a threshold, and 0 otherwise.
B3×3(x, y) looks for large changes in the depth image using



Fig. 5. LEFT: Corner locations of the object, indicated by green circles,
found by applying the Harris detector to the binary image thatsegments the
cloth from the background table. In this case there are five corners. Note
that, where the cloth is flat, the depth image blends into the background
in the figure. RIGHT: The same corners distinguished by whether they are
connected with the peak region (green), or outside the peak region (red). In
this case three of the five corners are connected with the peakregion.

Fig. 6. Locations of discontinuity (white points) on the object before (left)
and after (right) removing steep slopes. The left image displaysB3×3, while
the right image displaysDC(x, y).

the 4-neighbors of the pixel in the surrounding3×3 window.
Similarly, B5×5(x, y) = 1 if, in either the up/down or
left/right direction, the slopes of the depth image along
successive columns/rows are either in different directions
or vary by an amount more thanth. Therefore,B5×5(x, y)
looks for large changes in the slope of the depth image using
the 5 × 5 neighborhood of the pixel. Figure 6 illustrates the
results of equation (2).

4) Continuity Check of the Peak Ridge:The continuity
check combines the peak ridge with the discontinuity func-
tion. The valueCP (x, y) = 1 if (x, y) is contiguous with the
peak ridge as determined by the discontinuity function, and0
otherwise. To compute this function, a floodfill procedure is
applied to the peak ridge image, successively incorporating
adjacent pixels whose value in the discontinuity function is
0. When a discontinuity pixel is found whose value is 1, it is
not included in the region. Figure 7 (right) shows the result
of this procedure.

5) Continuity Check for all Peak Corner Locations:The
continuity check on all peak corner locations determines
which corners are connected to the peak region:

CC(x, y) = CL(x, y)
⋂

CP (x, y). (3)

This equation returns a subset ofCL(x, y) that contains
the locations of corners. The remaining subset,F (x, y) =
CL(x, y)

⋂

CC(x, y), where the overline indicates binary
complement, contains the locations of corners known to be

Fig. 7. LEFT: Different regions of the object found by applying connected
components after finding discontinuities. RIGHT: The region connected to
the peak ridge.

located on a different region than the one containing the
peak ridge. Such corners are likely on a different fold of the
cloth. Figure 5 (right) shows the former corners (for which
CC(x, y) = 1) as red circles, while the latter corners (which
are located on a different fold from the peak ridge) are shown
as green circles.

6) Cloth Model Grasp Point and Direction:The former
computations are used to determine a grasp point for the
cloth as follows. All of the points for whichCC(x, y) = 1 are
candidate grasp points, and the final grasp point is selected
arbitrarily from among these candidates. For the direction
in which to pull the cloth, there are two possibilities. First,
if |{(x, y) : CC(x, y) = 1}| = |{(x, y) : CL(x, y) = 1}|,
that is, all of the detected corners are on the peak region
surface, then the cloth is pulled away from the centroid of
the cloth. Otherwise, the cloth is assumed to contain a fold,
and therefore it is pulled toward the centroid in an attempt
to unfold the fold. The entire six-step procedure is repeated
until the cloth does not change shape.

III. EXPERIMENTAL RESULTS

The proposed approach was applied to a variety of initial
configurations of cloths to test its ability to perform under
various scenarios using Houdini 3D simulation software3.
In each experiment, different initial configurations were
used. Figure 11 illustrates the various configurations used
during our experiments. We tested our approach on a single
washcloth to demonstrate the process of our algorithm on a
piece of laundry.

A. Differences Between Pulling in Different Directions

Figure 8 illustrates the initial cloth configuration,IC ,
along with the eight different configurations that result from
pulling the cloth from a single(xG, yG) coordinate in eight
different orientations,θG. The eight different orientations
proceed from0 to 315 degrees in a counter-clockwise
direction at45-degrees intervals, i.e., the sequence of angles
is 0, 45, 90, 135, 180, 225, 270, 315, in degrees. We adopt the
convention that0 degrees points toward the bottom of the
image.

Figure 9 displays the difference values from the initial
configuration to the eight different configurations, in terms

3http://www.sidefx.com/
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Difference graph of 8 different orientations from initial configuration

Fig. 9. Difference graph of the eight different configurations of Figure 8 to
the initial configuration in the same figure, measured as a difference between
binary images (with 1 indicating foreground and 0 indicatingbackground).

of pixel values. The lower the difference value, the more in
common the two configurations share in terms of shape. As
can be seen from Figure 9, the4th and 5th configurations
are significantly different from the initial configuration,in
terms of shape. This plot illustrates how much the cloth
configurations can change from pulling on a single point.

In Figure 9, the reason the low and high orientations
are correlated to the initial configuration is because those
orientations are pulling the point away from the centroid of
the cloth. The middle orientations (i.e.,135 and180) have a
very different shape due to the fact that they are pulling the
point over the centroid and therefore completely change the
configuration / topology of the cloth.

B. Experimental Test of Algorithm

This experiment tested the first phase of the proposed
algorithm and monitored the process from eight iterations
of pulling the cloth from point(xG, yG) in orientationθG

starting with the same initial configuration,IC , as in section
III-A. Figure 10 illustrates the configurations throughout
the entire process. As can be seen from Figure 10, the
models continually change the configuration in a manner
that flattens and unfolds larger areas of the cloth as the
iterations increase. Eventually, the cloth is mostly flattened
into a more recognizable shape in the final iteration. The
following equation describes how the percentage of flatness
is calculated:

PCFlat =

∑

(x,y) E(x, y) < µ
∑

(x,y) E(x, y)
, (4)

whereE(x, y) is the value of the depth image, andµ = 20
is a threshold indicating the maximum depth image value for
which the cloth is considered to be lying flat on the table.
The overall goal of the next step in the laundry process is to
increase the flatness toward100%.

Configuration PCFlat(%)
Cloth Initial Final Initial Final

Dropped 4.8 18.1

Folded 11.1 83.5

Placed 30.6 56.2

Fig. 11. Various initial and final configurations along with the percentage
of cloth that is unfolded/flattened using the first phase onlyof the proposed
algorithm. The initial configuration was obtained by dropping the cloth (top),
folding the cloth across a table edge (middle), and placing the cloth by
lowering it to the table (bottom). In all cases the algorithm increases the
flattening percentage of the object. The final configurationsare a result of
the first phase only.

C. Taxonomy of Possible Starting Configurations

Figure 11 displays the initial and final configurations of
three different starting configurations after the eight steps
of the first phase of the proposed algorithm. The dropped
cloth was created by dropping the cloth onto the table from
a predefined height, the folded cloth was created by sliding
the article across the corner of the table and allowing it to
fold on top of itself, and the placed cloth was slowly placed
on the table from the same position as the dropped cloth. For
the most part, all of the final configurations contain a large
amount of the cloth to be unfolded and/or flattened. Figure 11
also displays the percentage of cloth that is unfolded/flattened
in the initial and final configurations. As observed in Figure
11, the difference in percentage between the initial and final
position is always increasing.

D. Test to Fully Flatten the Cloth

This experiment tested the proposed algorithm in deter-
mining if this approach would completely flatten a piece of
clothing. The test used the first and second phase of the
algorithm to grasp the cloth at various locations,(xG, yG),
and move the cloth at various orientations,θG, until the cloth
obtained a flattened percentage greater than95%. Figure
12 illustrates the configurations at selected iterations ofthe
entire algorithm. The percentages of flatness range from
0.01% → 95.6%. Figure 13 shows the percentage of flatness
against all iterations of the algorithm.

E. Experiment using PUMA 500

The goal of this experiment is to test the performance of
our algorithm in a real world environment using a PUMA
500 manipulator. Figure 14 displays the results of using the
peak region on an actual cloth to determine which corner
position (xG, yG) to select and in which orientationθG to
pull the object. We used a Logitech QuickCam 4000 for



Depth Image

Cloth Model
OrientationθG IC 0 45 90 135 180 225 270 315

Fig. 8. From Left to Right: The depth image of the initial configuration,IC , with the grasp point(xG, yG) coordinate marked with a red dot; and the
eight different configurations resulting from pulling the cloth from the initial configuration in eight different orientations,θG, using the same(xG, yG)
coordinate. Pulling in the direction opposite the centroidof the object tends to improve flattening (e.g.,θG = 0).

Depth Image

Cloth Model
PCFlat(%) 11.08 17.60 16.30 8.16 33.78 44.12 41.47 68.31 83.51

Fig. 10. Experimental test of algorithm for one initial configuration (folded cloth, see section III-C). From Left to Right: Eight successive configurations
resulting from pulling the initial configuration into eightsuccessive orientations,θG, from eight different grasp points,(xG, yG), using the first phase of
the proposed algorithm. Pulling in directions opposite the centroid causes the object to be nearly flattened.

Iteration 1 7 13 19 25 31 37 43 49

Depth Image

Cloth Model
PCFlat(%) 3.21 22.61 45.27 72.32 46.36 4.54 23.93 0.01 95.57

Fig. 12. Flattened cloth test for one initial configuration (folded cloth, see section III-C). From Left to Right: Nine different configurations resulting from
pulling the initial cloth49 times in successive orientations and grasp points, using thesecond phase of the proposed algorithm. The nine configurations
shown were selected by hand to be representative of the 49. The final iteration resulted in flattening the cloth with over 95% of the cloth flattened.
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Fig. 13. Plot of the percentage of flatness against all iterations of the
algorithm.

an overhead view to capture the configuration of the cloth.
After running the image through our approach, the system
calculated an output that was transmitted to the robot for
extraction. Figure 15 shows an example of the movements of
the robot after the location and orientation have been found.

IV. CONCLUSION

Laundry is a common household chore that is a difficult
problem to automate. We have proposed an approach to
interactive perception in which a piece of laundry is flattened
into a canonical position by pulling at various locations of
the cloth. The algorithm is shown to provide an initial step
in the process of unfolding / flattening a piece of laundry by
using features of the cloth. The features used in this paper are
a handful of possible cues that could be used in the future to
flatten a piece of laundry in fewer iterations. Other features
that were considered, but not used, were a prior physical
model of the cloth, the relationship between each corner and
edge, and the physical features of the texture and material
of the cloth.

Though this is a first step, future research in this novel



Peak Region

Actual Cloth

Fig. 14. Actual cloth test for one configuration. From Left toRight: The initial configuration and eight different configurations resulting from pulling the
initial cloth into 8 different orientations,θG, using8 different grasp points,(xG, yG) successively, using the first phase of the proposed algorithm (since
depth information was not available).

Fig. 15. The various steps of the PUMA manipulator pulling thecloth
in a specified orientation,θG. From Left to Right, Top to Bottom: the
manipulator grasps the cloth on the table, picks the cloth up to a predefined
height, pulls the cloth in a precalculated orientation, anddrops the cloth
back onto the table.

approach of interactive perception would be directed towards
using other types of laundry (i.e. shirts, pants, etc). Another
direction could be to handle parts of the cloth that are folded
inside out, like the arm of a shirt. We believe that these areas
are fruitful extensions for future research.
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