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Abstract— We propose an algorithm that uses energy mini-
mization to estimate the current configuration of a non-rigid
object. Our approach utilizes an RGBD image to calculate
corresponding SURF features, depth, and boundary informa-
tion. We do not use predetermined features, thus enabling our
system to operate on unmodified objects. Our approach relies
on a 3D nonlinear energy minimization framework to solve for
the configuration using a semi-implicit scheme. Results show
various scenarios of dynamic posters and shirts in different
configurations to illustrate the performance of the method.
In particular, we show that our method is able to estimate
the configuration of a textureless nonrigid object with no
correspondences available.

I. INTRODUCTION

Having concentrated on rigid objects for decades, roboti-
cists have begun to turn their attention toward the manipula-
tion of non-rigid objects. Among the several application areas
motivating such investigation is that of automatic laundry
handling. The ability of robots to locate clothing, identify
clothing, manipulate and fold clothing, and so forth would
be a tremendous asset to the increasingly promising field of
domestic robotics. Notable progress has been made in recent
years in developing systems capable of folding a T-shirt [1],
[2], matching socks [3], and classifying articles of clothing
[4], [5], [6], [7], [8], [9], [10], [11], among other tasks.

One of the core competencies in handling non-rigid objects
such as clothing is the ability to estimate the configuration of
the item, that is, a parameterization of the 3D coordinates of
the various points on its surface. Unlike a rigid object, whose
3D pose is characterized by six values, a non-rigid item
such as clothing has essentially infinite degrees of freedom,
making its configuration much more difficult to recover.
Nevertheless, the ability to estimate this configuration would
aid in grasping and planning tasks as well as folding and
unfolding.

In this paper we address the problem of estimating the 3D
configuration of a known non-rigid object such as an article
of clothing, piece of paper, or bendable poster. The item is
modeled as a triangular mesh whose 3D coordinates com-
pletely specify the configuration of the item. Our approach
formulates the problem as one of energy minimization,
building on the work of Pilet et al. [12] by extending mesh
estimation to 3D. By combining internal energy constraints
with data terms that take into account the information
available from an off-the-shelf RGBD sensor, the system
is able to estimate the item’s configuration in an efficient

manner. The approach does not rely on modifying the item
in any way (e.g., with handcrafted fiducial markers) but
instead uses SURF feature correspondences along with novel
depth and boundary terms to ensure that the mesh remains
accurate even in untextured areas. Results on several different
examples demonstrate the effectiveness of the approach.

II. PREVIOUS WORK

Emerging research on non-rigid objects includes motion
planning algorithms for deformable linear objects (DLOs)
like ropes, cables, and sutures [13], [14]; Probabilistic
RoadMap (PRM) planners for a flexible surface patch [15]
or deformable object [16]; learning approaches to sense
and model deformable surfaces [17], [18], [19]; and fabric
manipulation for textile applications [20], [21], [22]. In par-
ticular, the problem of automating laundry has been receiving
attention recently because of the increasing availability of
calibrated two-handed robots like the PR2. Researchers have
demonstrated systems for grasping clothes [4], [5], folding
clothes [6], [1], [2], [3], [7], and tracing edges [8], [9].
Related research has addressed folding origami [23], folding
towels [9], unfolding laundry [10], classifying clothing [24],
[25], and pairing socks [11]. Despite the progress in manip-
ulating non-rigid objects, none of this research addresses the
problem of estimating the 3D geometry of a non-rigid object.

Two recent research projects have independently aimed at
the goal of non-rigid 3D geometry estimation. Bersch et al.
[26] use fiducial markers printed on a T-shirt. An augmented
reality toolkit is used to detect markers, and stereo imagery
is used to automatically generate a 3D triangular mesh.
When the article of clothing is picked up, the grasp point
is inferred from the distances from the end effector to the
visible markers which then leads to a succeeding grasp point
in a two-handed robotic system. Similarly, Elbrechter et al.
[27] print specially designed fiducial markers on both sides
of a piece of paper. Multi-view stereo vision is used to
estimate the 3D positions of the markers which are then sent
to a physics-based modeling engine. In addition to using two
computers to control the two hands, three computers are used
for data acquisition and processing.

A large amount of research has been conducted in the
computer vision community in recent years on the problem
of non-rigid structure from motion (NRSfM) for either inan-
imate objects [28], [29], people [30], [31], [32], or both [33],
[34], [35]. These approaches utilize the movement of features



within a 2D video sequence to recover the 3D coordinates
of the preimages of the features in the scene. An alternate
approach is to estimate a triangle “mesh soup” [35] or locally
rigid patches [28] to yield a reconstruction in the form of a
triangulation. In contrast with NRSfM, our goal is to register
the 3D non-rigid model with the incoming RGBD sequence,
similar to the 2D-3D registration of Del Bue and colleagues
[36] [37].

In an effort to develop a system capable of handling real,
unmodified objects, our work aims to remove the need for
fiducial markers. Our approach is inspired by, and based
upon, the research of Pilet et al. [12] which formulates the
problem of 2D mesh estimation as energy minimization. In
related work, Salzmann et al. [38], [39] describe an approach
that operates in 3D but requires the restricted assumption
of rigid triangles in order to reduce the dimensionality.
Salzmann et al. [40] present a method for learning local
deformation models for textured and textureless objects. Our
approach extends this research by finding locally deformable
3D triangular meshes without fiducial markers whether in-
tensity edges are present around the boundary of the object
or not.

III. APPROACH

Let V = (v1, . . . , vn) be the n vertices of a 3D tri-
angulated mesh, where vi = (xi, yi, zi) contains the 3D
coordinates of the ith vertex. The state vector V captures
the shape of the mesh at any given time, where we have
omitted the time index to simplify the notation.

Our goal is to find the most likely mesh V ∗ in each frame,
by finding the shape that minimizes the energy of the system:

V ∗ = argminΨ(V ). (1)

We define the energy functional as the sum of four terms:

Ψ(V ) = ΨS(V )+λCΨC(V )+λDΨD(V )+λBΨB(V ), (2)

where ΨS(V ) is a smoothness term that captures the internal
energy of the mesh, ΨC(V ) is a data term that seeks to
ensure that corresponding points are located near each other,
ΨD(V ) measures the difference in depth between the mesh
vertices and the input, and ΨB(V ) is the boundary term that
regulates the mesh vertices located on the boundary of the
object. The weighting parameters λC , λD, and λB govern
the relative importance of the terms.

Each of the energy terms are useful in different scenarios.
Figure 1 illustrates the contribution of each energy term for a
toy example of a horizontal slice of vertices from the mesh.
We now describe the energy terms in detail.

A. Smoothness term

Let V̂ = (v̂1, . . . , v̂n), where v̂i = (x̂i, ŷi, ẑi), be a
hexagonal grid of equilateral triangles that is created either
off-line or from the first image of the video sequence.
We will refer to V̂ as the canonical mesh. Except for the
boundaries, each vertex in the canonical mesh has, when
projected orthogonally onto the z = 0 plane, three pairs
of collinear adjacent points passing through it, similar to

Fig. 1. Each of the energy terms contributes to improving the fit between
the mesh and the object. Left: Front view of an example mesh, containing
regular vertices (red dots), boundary vertices (blue dots), and vertices near
image texture (green dots). Right: Top view of mesh. From top to bottom,
the smoothness term ensures low derivatives in the mesh, the data term
pulls the mesh toward the correspondences (green dots), the depth term
moves vertices along the sensor viewing direction, and the boundary term
introduces lateral forces to increase the fit at the boundaries (blue dots).

[12]. Let E be the set of all vertex index triplets such that
(i, j, k) ∈ E means that v̂i, v̂j , and v̂k form two connected,
equidistant, and collinear edges in the projected canonical
mesh. Since the projected canonical mesh is formed from
equilateral triangles, we have

v̂i − v̂j = v̂j − v̂k ∀(i, j, k) ∈ E, (3)

assuming that the initial configuration is approximately
fronto-parallel. Therefore, in the deformed mesh V , we want
this to approximately hold:

vi − 2vj + vk ≈ 0, ∀(i, j, k) ∈ E (4)

which leads to the following smoothness term:

ΨS(V ) =
1

2

∑
(i,j,k)∈E

(xi − 2xj + xk)
2

+(yi − 2yj + yk)
2

+(zi − 2zj + zk)
2. (5)

Let

X = [x1 x2 · · · xn ]
T (6)

Y = [ y1 y2 · · · yn ]
T (7)

Z = [ z1 z2 · · · zn ]
T (8)

be vectors containing the x, y, and z coordinates, respec-
tively, of the deformed mesh. Extending the work in [12] to
3D, the above equation can be rewritten in matrix form as

ΨS(V ) = 1/2(KcolX)TKcolX

+ 1/2(KcolY )TKcolY

+ 1/2(KcolZ)TKcolZ, (9)

where Kcol is an ncol×n matrix, where ncol is the number of
collinear triplets. We have ncol ≈ 3n, where the boundaries
cause the approximation. The elements of the matrix Kcol

contain the value 0, 1, or −2 depending upon the relation-
ships within each triple (i, j, k) ∈ E. Each row of Kcol



Fig. 2. Example of barycentric coordinates. The point ĉi in one of the
equilateral triangles in the canonical mesh (left) retains its relative position
within the triangle as the triangle is deformed (right).

corresponds to a triple within the triangle mesh, and each
element in the row has a value of zero except for the three
locations of i, j, k which contain 1, −2, and 1, respectively.
Each column of Kcol corresponds to a vertex within the
mesh and has nonzero elements for the triplets containing
the vertex.

The above expression can be simplified as follows:

ΨS(V ) = 1/2(X
TKX + Y TKY + ZTKZ), (10)

where K = KT
colKcol is an n× n constant matrix capturing

the collinear and adjacent vertices in the canonical mesh
using E.

B. Correspondence term

The correspondence term uses the input data of the current
RGBD image to compare a possibly deformed mesh V with
the canonical mesh V̂ .

1) Barycentric coordinates: Suppose we have a point
p = (x, y, z) in the canonical RGBD image that happens
to lie within the triangle defined by vertices v̂i, v̂j , and
v̂k, as illustrated in Figure 2. The barycentric coordinates
of p are defined as the triple (βi, βj , βk) such that p =
βiv̂i + βj v̂j + βkv̂k and βi + βj + βk = 1. Given p, we
compute its barycentric coordinates by solving the system
of equations[

x̂i − x̂k x̂j − x̂k

ŷi − ŷk ŷj − ŷk

] [
βi

βj

]
=

[
x− x̂k

y − x̂k

]
(11)

for βi and βj , then setting βk = 1−βi−βj . If p lies within
the triangle, then the barycentric coordinates will lie within
0 and 1, inclusive, 0 ≤ βi, βj , βk ≤ 1; and the z equation
will also be satisfied: (ẑi − ẑk)βi + (ẑj − ẑk)βj = z − ẑk.

Now suppose that the mesh has deformed from V̂ to V .
If we assume that the relative position of p in the triangle
remains fixed, then we can define the transformation:

TV (p) = βivi + βjvj + βkvk, (12)

where vi, vj , and vk are the 3D coordinates of the deformed
mesh vertices of the triangle in which p lies. TV (p) yields
the 3D coordinates of p when the mesh is described by V .

2) SURF descriptors and putative matching: In order to
capture correspondences between consecutive frames, the
Speeded Up Robust Feature (SURF) detector and descriptor
[41] is used. SURF is a fast and robust feature selector that
is invariant to scale and rotation, providing interest locations
throughout the image. SURF detects features throughout the
image, but a simple foreground / background segmentation
procedure using depth values is used to remove SURF
features on the background, leaving only features on the
triangular mesh.

Putative matching of the SURF descriptors is used to es-
tablish sparse correspondence between successive images in
the video. For each pair of descriptors, the Euclidean distance
is computed, and the minimum is selected as the proper
feature match. Only the top fifty percent are chosen based on
the minimum Euclidean distances of the feature descriptors.
To improve robustness, feature matching is constrained to lie
within a given threshold of a location of the feature in the
previous frame of the sequence, assuming that the motion is
small in consecutive frames.

3) Correspondences: Let C = {(ĉi, ci)}mi=1 be the set of
m correspondences between the canonical image and the
input image. A specific correspondence (ĉi, ci) indicates that
the 3D point ĉi in the canonical image matches the 3D
point ci in the input image, where ĉi = (x̂ci, ŷci, ẑci) and
ci = (xci, yci, zci) for i = 1, . . . ,m. The data term is the sum
of the squared Euclidean distances between the input point
coordinates and their corresponding canonical coordinates:

ΨC(V ) =
1

2

∑
(ĉi,ci)∈C

∥ ci − TV (ĉi) ∥2 . (13)

C. Depth term

The depth term measures the difference between the z
coordinate of each 3D vertex in the current mesh and the
measured depth value. That is, it measures the distance along
the ray passing through the 3D vertex to the current depth
image obtained by the RGBD sensor:

ΨD(V ) =
1

2

n∑
i=1

|d(xi, yi)− zi|2 , (14)

where d(xi, yi) is the value of the depth image evaluated
at the position (xi, yi), while zi is the depth of the vertex
at that same position. This term is designed to ensure that
the mesh fits the data even in textureless areas where no
correspondences can be found.

D. Boundary term

We define boundary vertices to be those vertices that do
not have six neighbors. For every boundary vertex, we expect
it to remain near the boundary of the object even as it
undergoes non-rigid deformations. Figure 3 illustrates the
need for the boundary term in textureless areas. To ensure
this result, the boundary term captures the distances between
boundary vertices and the nearest 3D boundary point within
the image, as determined by the foreground / background



Fig. 3. An example illustrating the need for the boundary term. Top: As
a vertical object is increasingly slanted over time (from left to right), the
vertices deviate from their true location, due to the limitation of the depth
term to induce only forces parallel to the viewing direction (indicated by
horizontal light blue arrows). Bottom: With the boundary term imposing
lateral forces, the mesh vertices remain in their proper locations.

segmentation procedure:

ΨB(V ) =
1

2

∑
vi∈B

(gd(vi)− gd̂(v̂i))
2, (15)

where gd̂(v̂i) is the distance from the canonical vertex v̂i to
the nearest boundary point in the canonical image d̂, gd(vi)
is the distance from the current vertex vi to the nearest
boundary point in the current image d, and B is the set
of boundary vertices. This term introduces lateral forces on
the vertices to ensure the mesh fits the data in textureless
regions when the object’s motion has components parallel to
the image plane.

E. Energy minimization

Our goal is to locate the mesh that best explains the
data while adhering to the smoothness prior. To find the
configuration of minimum energy, we compute the partial
derivative of the energy with respect to the vectors X , Y ,
and Z, and set the result to zero:

∂Ψ(V )

∂X
=

∂ΨS(V )

∂X
+ λC

∂ΨC(V )

∂X

+λD
∂ΨD(V )

∂X
+ λB

∂ΨB(V )

∂X
(16)

∂Ψ(V )

∂Y
=

∂ΨS(V )

∂Y
+ λC

∂ΨC(V )

∂Y

+λD
∂ΨD(V )

∂Y
+ λB

∂ΨB(V )

∂Y
(17)

∂Ψ(V )

∂Z
=

∂ΨS(V )

∂Z
+ λC

∂ΨC(V )

∂Z

+λD
∂ΨD(V )

∂Z
+ λB

∂ΨB(V )

∂Z
(18)

Rewriting the transformation using an n × 1 vector B
whose elements are βi, βj , and βk in the appropriate slots
but zeros everywhere else:

TV (p) = V B, (19)

the partial derivatives for the correspondence term are as
follows:

∂ΨC(V )

∂X
= −

∑
(ĉi,ci)∈C

(
xci −XTB

)
B (20)

∂ΨC(V )

∂Y
= −

∑
(ĉi,ci)∈C

(
yci − Y TB

)
B (21)

∂ΨC(V )

∂Z
= −

∑
(ĉi,ci)∈C

(
zci − ZTB

)
B (22)

The partial derivatives for smoothness for straightforward:

∂ΨS(V )

∂X
= KX (23)

∂ΨS(V )

∂Y
= KY (24)

∂ΨS(V )

∂Z
= KZ. (25)

The partial derivative of the depth term is similar to that
of the data term. Rewriting zi using an n × 1 vector Fi

containing a one in the ith slot but zeros everywhere else:

zi = ZTFi, (26)

yields

∂ΨD(V )

∂Z
=

n∑
i=1

(d(xi, yi)− ZTFi)Fi, (27)

Similarly, the partial derivatives of the boundary term
require rewriting vi using the same vector Fi:

gd(vi) = V TFi, (28)

leading to

∂ΨB(V )

∂X
= −

∑
vi∈B

(∆X d̂(v̂i)−XTFi)Fi (29)

∂ΨB(V )

∂Y
= −

∑
vi∈B

(∆Y d̂(v̂i)− Y TFi)Fi (30)

∂ΨB(V )

∂Z
= −

∑
vi∈B

(∆Z d̂(v̂i)− ZTFi)Fi, (31)

where ĝd̂(v̂i) = [∆X d̂(v̂i) ∆Y d̂(v̂i) ∆Z d̂(v̂i) ]
T .

In order to calculate the minimal solution, we employ the
semi-implicit scheme used by Kass et al. [42]. The smooth-
ness term is treated implicitly, while the data terms are
treated explicitly. Letting Vt represent the mesh at iteration
t and Vt−1 represent the mesh at the previous iteration t−1,



we have

α(Xt −Xt−1) + KXt (32)

− λC

∑
(ĉi,ci)∈C

(
xci −XT

t−1B
)
B

− λB

∑
vi∈B

(∆X d̂(v̂i)−XTFi)Fi = 0

α(Yt − Yt−1) + KYt (33)

− λC

∑
(ĉi,ci)∈C

(
yci − Y T

t−1B
)
B

− λB

∑
vi∈B

(∆Y d̂(v̂i)− Y TFi)Fi = 0

α(Zt − Zt−1) + KZt (34)

− λC

∑
(ĉi,ci)∈C

(
zci − ZT

t−1B
)
B

− λD

n∑
i=1

(d(xi, yi)− ZTFi)Fi

− λB

∑
vi∈B

(∆Z d̂(v̂i)− ZTFi)Fi = 0,

where α > 0 is the adaptation rate.
Rearranging terms leads to

(K + αI)Xt = αXt−1 (35)

+λC

∑
(ĉi,ci)∈C

(
xci −XT

t−1B
)
B

+λB

∑
vi∈B

(∆X d̂(v̂i)−XTFi)Fi

(K + αI)Yt = αYt−1 (36)

+
∑

(ĉi,ci)∈C

(
yci − Y T

t−1B
)
B

+λB

∑
vi∈B

(∆Y d̂(v̂i)− Y TFi)Fi

(K + αI)Zt = αZt−1 (37)

+
∑

(ĉi,ci)∈C

(
zci − ZT

t−1B
)
B

+λD

n∑
i=1

(d(xi, yi)− ZTFi)Fi

+λB

∑
vi∈B

(∆Z d̂(v̂i)− ZTFi)Fi

Solving this equation for the unknowns Xt, Yt, and Zt yields
the desired result as an iterative sparse linear system.

IV. EXPERIMENTAL RESULTS
We captured RGBD video sequences of shirts and posters

to test our proposed method’s ability to handle different non-
rigid objects in a variety of scenarios. We also verified the
contributions made by the novel depth and boundary energy
terms to the accuracy of the estimated object configuration.
For our experiments, the weights were set according to λC

= 1.3, λB = 0.8, and λD = 0.6. Further results of the system
can be seen in the online video.1

1http://www.ces.clemson.edu/˜stb/research/laundry pose estimation

Side View

Top View

Raw Data Without Depth With Depth

Fig. 4. The depth term improves results significantly. From left to right:
the input point cloud, the estimated mesh without using the depth term, and
the estimated mesh using the depth term.

A. Illustrating the contribution of the depth term

Figure 4 compares the algorithm with and without the
depth term, but with the smoothness and correspondence
term in both cases. The depth term causes the triangular mesh
model to adhere to the object along the z-axis perpendicular
to the image plane. As shown in the figure, the resulting 3D
meshes more accurately capture the current configuration of
the object when the depth term is included. The improvement
is especially noticeable in untextured areas.

B. Illustrating the contribution of the boundary term

Figure 5 compares the algorithm with and without the
boundary term, using the smoothness, correspondence, and
depth term in both cases. The boundary term introduces
lateral forces to cause the mesh to adhere to the object
in areas near the contour of the object. The improvement
resulting from the term is clear from the figure. Note also
the subtle error along the top edge of the object, where the
depth term alone raises the top corners (making it appear as
though the top middle was sagging), as described in Figure 3.

C. Partial self-occlusion

Figure 6 demonstrates a sequence of a T-shirt that partially
occludes itself. In this experiment, it is shown that losing
part of the texture located on the object does not affect the
end result. Rather, the algorithm is still able to estimate the
configuration of the shirt throughout the entire sequence,
even without all the feature correspondences. The shirt was
occluded by holding it by the shoulders and laying the lower
one-third of the shirt over a chair while lowering the other
two-thirds behind the rest of the chair. The figure shows the
triangular mesh overlaid on the 2D RGB image, along with
a side view of the 3D mesh.



Fig. 6. Four frames of a sequence in which a shirt partially occludes itself. Top: The estimated mesh V overlaid on the RGB color image. Bottom: a
side of the 3D mesh with a 45o pan angle.

Raw Data {ΨS ,ΨC} {ΨS ,ΨC ,ΨD} All

Fig. 5. The improvement resulting from the various terms. From left to
right: texture mapped point cloud of RGBD input data, the mesh resulting
from only the smoothness and correspondence terms, the mesh from all but
the boundary term, and the mesh resulting from all the terms. From top to
bottom: top view, front view, and side view with 45o pan.

D. Textureless shirt sequence

Figure 7 shows a textureless T-shirt being rotated out of
plane. This experiment illustrates the ability of our algorithm
to estimate the configuration of a completely textureless non-
rigid object without any fiducial markers. Since no SURF
features were detected on the object, the energy function
was required to operate without any benefit from the corre-
spondence term. Nevertheless, the figure demonstrates that
the remaining terms are able to provide an accurate estimate
of the current configuration.

V. CONCLUSION

We have presented an algorithm to estimate the 3D config-
uration of a nonrigid object through a video sequence using
feature point correspondence, depth, and boundary informa-
tion. We incorporate these terms into an energy functional
that is minimized using a semi-implicit scheme, leading to
an iterative sparse linear system. Results show the ability
of the technique to track and estimate the configuration of
nonrigid objects in a variety of scenarios. We also examine
the reasons behind the need for the novel depth and boundary
energy terms. In the future we plan to extend this research
to handle a two-sided 3D triangular mesh that covers both
the front and back of the object. We also will include color
information along with depth information to provide a more
accurate segmentation of the object from the background.
Another step is to integrate this algorithm into a robotic
system that can grasp and handle non-rigid objects in an
unstructured environment.
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