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ABSTRACT

A novel method is presented for visually monitoring a higliwehen the camera is
relatively low to the ground and on the side of the road. Inhsacase, occlusion and
the perspective effects due to the heights of the vehiclesatebe ignored. Features are
detected and tracked throughout the image sequence andjitbeped together using a
standard algorithm. The key part of the proposed system estimate the 3D world co-
ordinates of feature points on the vehicles from a singleszamExperimental results on
different highways demonstrate the system’s ability tocegsfully segment and track ve-

hicles even in the presence of severe occlusion and sigmifogaspective changes.
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Chapter 1

Introduction

Increase in demand for travel on highways has seen an explgsbwth over the years.
It is no longer feasible to merely build more roads to meet #ver increasing demand.
Although it will be inevitable to augment the current infragsture over the long term,
to address the urgent needs it is necessary to utilize tlstirexiinfrastructure more effi-
ciently. As a result, Intelligent Transportation SystesS), which is an interdisciplinary
technology that helps in design, analysis and monitoringadfic networks, has received
a lot of attention. Throughout the U.S., ITS technology i;bgeaised at several locations
for automated traffic monitoring and incident detectionlmapions (details can be found
at http://www.its.dot.gov/). Most ITS are designed usiegdily available technology (sen-
sors, communication etc.) which makes them reliable antuls@roven credibility in
recent years has made ITS an integral part of every modersgoatation system.

In modeling traffic networks, parameters such as vehiclec@peeds, headway (dis-
tance between consecutive vehicles) and truck percentagekey role. Using special-
ized sensors to estimate these parameters has gainednigmyer manual data collection.
A study of different type of sensors in traffic monitoring &pgtions is reported in1[8g].

A summary of advantages and disadvantages of differenstgpsensors is presented in

Tablel. Video sensors (cameras) are rich in information and ofidevarea detection with
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a single sensor. Unlike loop detectors, traffic interruptgnot required for the installation

and maintenance.

1.1 Related Work

The use of image processing for traffic surveillance wasai@itl in the mid 1970s in the
United States and abroad, most notably in Japan, FrancéraliasEngland, and Belgium
[19]. The hardware and the algorithms used for estimating ¢ratirameters have seen a
great improvement over the years. Existing commerciaksystuse a combination of in-
cident detection techniques (detecting changes in imdgasities at predefined locations)
and heuristics to estimate quantities such as vehicle @uhtueue length. A much harder
problem, but with more potential is tracking, which stilhtains an active research area.
At this point we will review some of the commercial and resbasriented systems related

to traffic monitoring.

1.1.1 Commercial Systems

By the late 1980s, video imaging detection systems were rteatka the U.S. and else-
where, generating sufficient interest to warrant researatetermine their viability as an
inductive loop replacemen®()]. At present, there are a number of commercial systems
being used throughout U.S. for manual as well as automaififocctmonitoring and incident

detection. Two of the popular commercial systems are desdtbelow:

Autoscope Solo ProAutoscope has enjoyed popularity over the years for italbdlty

and accuracy. The Autoscope Solo Pro is the latest versidimeahtegrated camera and
processor from Image Sensing Systems, Inc. Autoscope velgole detection system has
continued to set the standard for accuracy, reliabilitg #exibility. Market success and

market growth have attracted a handful of companies offecompeting video systems.



Type

Advantages

Disadvantages

Inductive loop

e Low per-unit cost

Installation and maintenance r

detector e Large experience base quire traffic disruption
e Relatively good performance e Easily damaged by heavy vehi
cles, road repairs, etc.
Microwave Installation and repair do not re- e May have vehicle masking in
(Radar) quire traffic disruption multilane application
e Direct measurement of speed e Resolution impacted by Feq
e Multilane operation eral Communications Commis-
e Compact size sion (FCC) approved transmit fre
quency
e Relatively low precision
Laser Can provide presence, speed, and e Affected by poor visibility and
length data heavy precipitation
May be used in an along-the-road e High cost
or an across-the-road orientation
with a twin detector unit
Infrared e Day/night operation e Sensors have unstable detecti
e Installation and repair do not re- zone
quire traffic disruption e May require cooled IR detectd
Better than visible wavelength for high sensitivity
sensors in fog e Susceptible to atmospheric o
Compact size scurant and weather
e One per lane required
Ultrasonic Can measure volume, speed, oc- e Subject to attenuation and dista
cupancy, presence, and queue tion from a number of environt
length mental factors (changes in an
bient temperature, air turbulenc
and humidity)
¢ Difficult to detect snow-covere
vehicles
Magnetometer Suitable for installation in bridge e Limited application
decks or other hard concrete sur- e Medium cost
faces where loop detectors cannot
be installed
Video Provides live image of traffig e Live video image requires exper
processing (more information) sive data communication equif

e Multiple lanes observed
e No traffic interruption for instal-

lation and repair
Vehicle tracking

ment

Different algorithms usually ret

quired for day and night use
Possible errors in traffic data tra
sition period

Susceptible to atmospheric o
scurant and adverse weather

Table 1.1: Performance comparison among existing incidetgction technologied §]

=

N
D

—
1
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In the larger competition for an above-ground detectiomtsmh alternative to in-ground
loops, video detection systems have been a clear wirkri#r This system consists of a
color camera, integrated machine vision processor, anca zens. Autoscope is used
as a video alternative to loop detectors for estimatinditrglarameters such as vehicle
counts, speeds, headways and turning counts. A user spatdfiection zones in the im-
age and the algorithm detects the presence of a vehicle iteata# zone. According to
the Autoscope specifications, for optimal performance cdraera should be placed &t
meters {0 feet) above the road surface. In situations of high traffisgastions however,

the camera is usually mounted much higher.

Vantage :This technology is developed by Iteris. Similar to Autosep@antage cameras
are placed at an optimal location and virtual detection ga@re monitored inside the im-
age by the algorithm. From the results reportedZii,| Autoscope was found to be more

accurate in similar traffic conditions.

1.1.2 Research in Vehicle Tracking

Applying techniques of motion segmentation for trackingietes has been an interesting
application of computer vision. A number of different apgebes have been proposed in
the past, each having its own advantages and shortcomingproaches which assume
that objects to be tracked (vehicles) have already beednlinéd are not considered in the
following discussions, since such systems can not be usedtomatic traffic analysis.
Techniques used for vehicle detection and tracking candssitied into following popular

approaches:

Blob Tracking. In this approach, a background model is generated for thees¢®r each
input frame, the absolute difference between input frantethe generated background

image is processed to extract foreground blobs correspgridithe vehicles on the road.
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Variations of this approach have been proposed.iih 17, 6]. Gupte et al. 10] use adap-
tive background subtraction to extract a foreground ohjeask. The threshold for binary
image segmentation is chosen dynamically using the hiatogf difference image. Ve-
hicle tracking is performed at two levels: region level amdhicle level. The association
problem between regions in consecutive frames is formdilatethe problem of finding
a maximal weight graph. The authors reporf®d: detection accuracy and?% classi-
fication accuracy for the test data which was acquired on @&ncagt day to remove the
problem of shadows. Effectiveness of the algorithm in treead significant heavy-vehicle

traffic (large trucks, trailers etc.) is unclear.

The vehicle tracking algorithm proposed by Magéé]] utilizes combination of per
pixel background model and a set of set of single hypothesegfound models based on
a general model of object size, position, velocity, and goldistribution. Each pixel in
the scene is explained as either background, belonginga@btine foreground objects or
as noise. Ground-plane calibration information is usedrengthen the object size and
velocity consistency assumption. For improving trackieguits, a prior model of typi-
cal road travel directions and speeds is built. This helpwiiralizing the tracker with
the mean motion profile (as opposed to random value, or zdoagity® which is close to
the ground truth. Using color information and optimal caalecation, impressive results

(99% — 100%) have been reported over a one minute sequence.

Active Contour Tracking. A closely related approach to blob tracking is based on track
ing active contours (popularly knows sisake}representing an object’s boundary. Vehicle
tracking using active contour models has been reported Hgiat al. [L6]. The contour is
tracked using intensity and motion boundaries. A contouniiglized for a vehicle using a
background difference image. Tracking is achieved usirgKalman filters, one for esti-

mating the affine motion parameters, and the other for estim¢éhe shape of the contour.
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An explicit occlusion detection step is performed by ingéetsg the depth ordered regions
associated to the objects. The intersection is excluddueisihape and motion estimation.
Results are shown on real world sequences without shadoveveresocclusions. The al-

gorithm is limited to tracking cars.

3D-Model Based Tracking. Tracking vehicles using three-dimensional models has been
studied by several research group§,[11, 8, 23]. Some of these approaches assume aer-
ial view of the sceneZ3], and three dimensional wireframe models for differentetyof
vehicles are used for matching with edges detected in thgemla [3], a single vehicle is
successfully tracked through a partial occlusion. Apliity of the model based approach

for congested traffic scenes is not clear.

Markov Random Field Tracking. An algorithm for segmenting and tracking vehicles in
low-angle frontal sequences has been proposed by Kamijo[ét3 In their work, the im-
age is divided int® x 8 pixel blocks, and a spatiotemporal Markov random field (SR

is used to update an object map using the current and previage. Motion vectors for
each block are calculated, and the object map is determipeditimizing a functional
combining the number of overlapping pixels, the amount wfulee correlation, and the
neighborhood proximity. The algorithm does not yield 3Dommhation about vehicle tra-
jectories in the world coordinate system, and to achieverate results it is run on the
sequence in reverse so that vehicles recede from the cafrtezaccuracy increased two-
fold when the sequence was processed in the reverse omgert thnot suitable for on-line
processing when time-critical results are required. Thbéa@s found that the low-angle

scenario is indeed a challenging problem.

Feature Based Trackingln this approach, instead of tracking a whole object, swatbies

of an object are tracked. The method is useful in situatidngaatial occlusions, where
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only a portion of an object is visible. The task of trackingltple objects then becomes
the task of grouping the tracked features based on one or simail@rity criteria. Beymer
et al.[4] have proposed a feature tracking based approach for tk@tasaffic monitoring
application in fi]. In their approach, point features are tracked throughioeitdetection
zone specified in the image. Feature points which are trasedessfully from entry re-
gion to the exit region are considered in the process of gngupGrouping is done by
constructing a graph over time. Vertices represent suteifedracks and edges represent
grouping relationship between tracks. A sub-feature igailhy connected to all the neigh-
boring within certain radius in the image plane. Througtatiee motion, edges repre-
senting motion disparity are broken. To compensate eff@ctiepth, a single road-plane
homogrpahy mapping is used. The algorithm was implementaduti-processor digital
signal processing (DSP) board for real-time performancesufehave been reported for

day and night sequences with varying levels of traffic cotiges

1.1.3 Performance Factors

Some of the performance issues that exist in the problemtofheated traffic monitoring

are the following:

e Location of the Camerdn case of most systems, the camera needs to be placed high
above the ground looking down at the vehicles. This serveptwposes]) field of
view of the camera increases with its distance from the gi®ulimits occurrences

and severity of occlusions.

e Traffic Conditions.When the traffic is free flowing, vehicles are well separated. |
that case, tracking is relatively easy. When traffic is mostoyvly, vehicles travel
close to each other resulting into more occlusion eventdoeance of most of the
systems degrade in such situations. The only algorithmishdgsigned specifically

for such situations is the one proposed by Beymer et]al.|
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e Truck PercentageA large vehicle often occludes nearby smaller vehicles. hin t
sequences used for testing the algorithm, it can be seen thaje truck or a trailer
traveling in the first lane (the lane closet to the cameraluoies the vehicles traveling
in the next lane almost completely. In addition, heavy viglsioften result into

multiple counts in case of trip-detection type systems.

o Number of Laned-or the situation in which camera is placed at the side ofdlad r

results are more accurate for the lanes closer to the camera.

e Moving ShadowsMoving cast shadows of vehicles result into two or more Velic

merging into a single foreground object, thus reducing tteeieacy of the system.

¢ Lighting Conditions Different algorithms are required for daytime and nigh&inA

notable exception to this is the algorithm proposed by Beyhat [4].

¢ Weather ConditionsReflection of the headlights on a wet road results into wrong ve
hicle counts. In case of a snow or a rain, segmenting the fovegl objects becomes

more difficult.

The commercial systems mentioned in the previous sectinesigned to be integrated
with a traffic management system or similar specializediagbns (e.g. toll-gate moni-
toring, surveillance). For such projects adding the regfuinfrastructure (e.g. mounting
poles for the cameras) is a viable option. It is not alwaysifda, however, to place the
camera at a high vantage point. For example, to gain knowlatigut the impact of, say,
building a shopping center on neighboring roads and intéises, it is common to place a
camera on a portable tripod on the side of the road to gatherateut the current traffic
patterns. The transient nature of such a study precludesekge mounting equipment and
strategic placemeniff]. Absence of tall structures in rural areas is another 8@gnavhere
placing the camera at a high vantage point is difficult. Whencdimera is at a low angle,

the planar motion assumption (motion in the road plane)atateéd. All the techniques



High angle Low angle

Figure 1.1: High angle vs. low angle situation.

discussed in the previous section assume planar motiohdorahicles with the exception

of the approach followed by Kamijo et &l.j].

1.2 Definitions

For better understanding of the rest of the material, sorfieitiens are presented below:

Feature point A point location in the image having some kind of discernitplslity (e.g.

a corner) Feature pointandfeaturewill be used interchangeably in rest of this thesis.
Preimage A unique point in the world corresponding to a point locatiothe image.

World coordinate system A three dimensional Euclidean coordinate system defined by

the user in the offline calibration process.

Low-angle view View from the camera closer to the ground and looking almasaltel

to the road.

Frame-block A set of consecutive frames in the sequence, also referrad goblock of

frames.



Chapter 2

Approach

The sequence is assumed to be taken from a single graysoaégacpointing at the road
from the side. The task of segmenting and tracking vehicléaw-angle cluttered scenes
is formulated as a feature tracking and grouping probleratufe points are tracked in the
image sequence using a standard technique followed byaggimof 3D world coordinates
for those points, which are then grouped using a standanthesgigtion technique. The
novelty of this work is the estimation of 3D coordinates. Tast of the chapter described

this approach in detail.

2.1 Offline Calibration

Calibration is required to estimate 3D world coordinatesdomesponding 2D points in

the image. The calibration process described below is forglescamera and does not re-
quire knowledge about the camera specifications such adéocgh or sensor dimensions.
The only information that is needed is six or more point cgpandences, which makes it

possible to process pre-recorded sequences captured fikamown cameras.
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2.1.1 Perspective-Projective Camera Model

We assume a perspective-projective pinhole camera moded.gé€neral relationship be-
tween an object point measured with respect to a user-sdl@adrid coordinate system
and its image plane point is denoted b$ a 4 homogeneous transformation matrie].

This matrix will be referred as the camera calibration mxafi

p=CP, (2.1)

wherep=[uw vw w'andP =[x y z 1] are vectors containing homogeneous
coordinates of image poinp,= [u v]T and world pointP = [x 'y z]T respectively.

Representing the matrix with corresponding entries, we get

X
uw Ci1 Ci2 Ci3 Cyiy
y
VW | = | Cy Cp» Cy Cu (2.2)
Z
w C31 C32 C33 Csy
1

BecauseC is unique only up to a scale factor, we normalize it by fixing Htale factor
C3s = 1.

Expanding the above equation then yields

C11X+ Ci2Y + C13Z+ Cyg

= W (2.3)

v — C21X 4 Co2Y + Co3Z+ Coy (2.4)
w

W = C3X+ C3y+C33Z2+ 1 (2.5)

Substitutingw into first two equations and rearranging leads to

U=XC1+YC2+ZC3+Cy —UXG —UYGy —UZG3 (2.6)
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V=XCy +YCa+ZG3+Cuy—VXG —VYGy —VZG3 (2.7)

These equations define a mapping from the world coordinatéstimage coordinates.

2.1.2 Calibration Process

The image coordinates of a point can be calculated from itdthomordinates and camera
calibration matrixC, which consists of 1 unknown parameters. Knowing the world coor-
dinates and the image coordinates of a single point yieldsemuations of the form2(6)

& (2.7). Six or more points in a non-degenerate configuration leaahtover-determined

system:
_ Xt Y1 zz 1 0 0 0 0 —uX —Wwyr —Wz 1 Ci1 | _ U _
0 0 0 0 xx v1v zz 1 —wviXgq —wniy1 —wvizg Cio 2
X2 Yo Z 1 0 0 0 0 —UyXe —UYo, —Uy2Z Ci3 U
00 0 0 % Vo 2z 1 —VaXo —VoVo —Voz || Cu | = | W (2.8)
Ca1
X Yo Zn 1 0 0 0 0 —UX —UyYn —UnZ, : Un
i 0 0 0 0 X VYn Zv 1 —VaXn —Va¥n —WnZ |1 C33 ] i A ]

which can be solved using a standard least squares technique

The offline calibration process depends upon the userfsp@égioint correspondences
for the calibration process. For improving the accuracig desired that the world coor-
dinates are derived from the actual measurements of the strexample, having place
markers at known distances. For cases where this inform#iaot available (e.g. pre-
recorded data), an approximation can be done using staspaatfications such the width
of a lane and length of a truck. Gupte et dl0[have developed a tool to calibrate the road
surface with an arbitrary world coordinate system. Outzation tool, which is shown in

Figure2.1, is similar to that developed by Gupte et al0], except that in their work the
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Figure 2.1:Our calibration tool.

tool was used to find a planar mapping between the points aio#tteand the image points;
whereas in our case, the calibration tool is being used tmat a perspective mapping.
An example of the calibration process is shown in Figeuz First, the user places a
marker across the width of the road and perpendicular toahe markings as shown in
Figure2.2 (a). With the marker position unchanged, the sequence sraed till the rear
end of the truck appears to align with the marker positionnenground. A new marker is
placed to align with the height of the truck (b). In the sanagrfe a marker is placed on the
ground to align with the front end of the truck (c). Once agéie sequence is advanced
till the marker placed on the ground in (c) appears to aligim wie read end of the truck.
This is shown in (d). For the same frame, the marker is reatignith the front end of
the truck as shown in (e). A new marker is placed across théhvaflthe road (f). One
more time, the sequence is advanced for the new marker t@agligning with the truck’s
rear end. An additional marker is placed as shown in (g) ilnsuway that it appears to be
aligned with the height of the truck. The result looks as show(h). Using the dimensions
of a known type of vehicle is an approximate method for ediimyavorld coordinates of
control points. Tabl@.1.2lists average lengths of some of the common vehicle typasfou
on the road. In addition, the information about lane widtly (&2 feet on an interstate) and
number of lanes is used. The calibration process is simpleuanally takes around two

minutes to complete. Figu3shows calibration results for different sequences.
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Passenger Car 17.4 feet
Pickup Truck 19.1 feet
Buses 41.7 feet

4+ axle single units 51.2 feet

5-axle single trailer trucks 62.4 feet
6 or more axle single trailer trucks71.2 feet
5 or less axle multi trailer trucks| 70.0 feet

~No o~ WDNPR

Table 2.1: Average lengths of standard vehicle classegpsted in smart loop technology demonstration
project webpagel].

- =
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Figure 2.3: Offline calibration for different sequences.
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2.1.3 Backprojections

The imaging process maps a point in three dimensional spaxa iwo dimensional image
plane. The loss of dimension results in a non-invertible pragp  Given the calibration
parameters for the camera and the image coordinates of la gioigpt, the best we can do
is to determine a ray in space passing through the optica¢cand the unknown point in

the world. Rearranging equatioris) & (2.7) yields equations for two planes in 3D space.

(U Cy1 — CH) X+ (U Cyo — Clg)y—l— (U Cy3 — C13) Z+ (U — C14) =0 (29)

(VG — Co1) X+ (VG2 — C2) Y+ (VCy3 — Co3) Z+ (V—Coq) =0 (2.10)

The intersection of these two planes is the ray in 3D passirggigh the point in the world

P, which is projected ap in the image plane. The problem is under-constrained sirece w
have two equations and three unknowns, namgjyandz. If we know eitherx, y or z, we
can solve for the other two using the image coordinate<ard the sections to follow, we

will explore a simple technique to achieve this.

2.2 Processing a Block of Frames

In the algorithm proposed by Beymer et &], [the point features tracked successfully from
the entry region to the exit region are considered in thegraustep, which does not pose

a problem when the camera is placed at a high vantage poikinpaown on the road.

In the low-angle scenario in which we are interested, fratjpeclusions and appearance
changes (as vehicles approach the camera) result in lodarganumber of features. As

a result, the number of features that are tracked for theaviaxtient of the detection zone

is not enough to achieve useful results. One way to overcbmm@toblem is to process a
block of frames (typicallys to 20 frames per block) and to associate segmented vehicles

between the successive blocks. Features are tracked Hooug block of image frames,
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overlapping with the previous block by frames. The length of a block is determined
by the average speed of the vehicles and the placement oathera with respect to the
road. If the number of frames in a block is too small, a largenber of features will
be tracked successfully throughout the frames in the blbaok,the motion information
will be insufficient for effective segmentation. On the athand, using more frames in a
frame-block will yield more reliable motion information éte expense of losing important
features. The proposed algorithm relies on human judgneebalance between these
tradeoffs.

The steps described in the following sections are perforomgtie features tracked over

a single block.

2.2.1 Tracking Features

Feature points are automatically selected and tracked tisKanade-Lucas-Tomasi (KLT)
feature trackerd], which computes the displacemehthat minimizes the sum of squared

differences between consecutive image framasdJ:

2

//W {l(x—g)—J(Hg) dx,

whereW is a window of pixels around the feature point. This nonlimg@aor is minimized

by repeatedly solving its linearized version:
Zd = e,

where

Xew
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andg(x) = 8%/& is the spatial gradient of the average image. These eqsadien
identical to the standard Lucas-Kanade equati@é$ lput are symmetric with respect to
the two images. As inJ6], features are automatically selected as those pointeimihge
for which both eigenvalues & are greater than a minimum threshold.

Among all the features that are tracked, those featureshdetong to the background
are discarded. This requires knowledge of the foregroujettdh The process of extracting

foreground objects (blobs) is explained in the next section

2.2.2 Background Subtraction

Background subtraction is a simple and effective technigueextracting the foreground
objects from the scene. The process of background sulmngdinvolves initializing and
maintaining a background model of the scene, and subtratim estimated background
image from the frame being processed. This is followed bgdholding the difference
image and morphological processing to yield foreground$ld review of several back-
ground modeling techniques is presenteddin [

A simple method of temporal median filtering produced sati&iry results for the test
sequences. More elaborate methods like mixture of Gausfhar nonparametric kernel
density estimation?] offer better accuracy for segmenting foreground in chettiescenes.
For the scope of this research, the median filtering tectenwgas chosen for its simplic-
ity and effectiveness. The median filter belongs to a gerdasis ofrank filters It is
frequently used in image processing for removing noise imege. For background mod-
eling, we will perform one dimensional median filtering im& domain. For each pixel in
the background image, the median value is selected fromethaf yalues observed at the
same pixel location in the previousframes. Sample frames from two of the sequences
along with the generated background images are shown imd=2gdi

For each frame-block, a binary thresholding operation isopeed on the absolute

difference between background image and first frame of tbekblThe difference image
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Figure 2.4: Sample frames and estimated background imagyas temporal median filtering.
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() (e)

Figure 2.5:Background subtraction: (a) generated background, (b)-(c) and (d)-(e): input fraume resul-
tant foreground mask

needs to be processed further (using morphological opesgtio suppress false detections,

and to obtain closed foreground regions.

2.2.3 Stable Features from a Single Frame

It was shown in sectiofi.1.2& section2.1.3that for a point in the image, we can estimate
the 3D coordinates of the corresponding world point usirggdalibration parameters and
at least one component of its world coordinates. A simplbriggie to achieve the same is
presented here which involves finding the vertical progecof a point on the road surface

in the image. The foreground mask generated in the previepsis used to find the pro-
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() (b)

|,

(©)

Figure 2.6:Road projection: Projecting a feature on the road surface in the image fomesitg its height.
(a) Input frame (b) foreground mask is used for ground ptejagc) 3D model.p andg are image points
corresponding t® andG respectivelyO is the optical center.
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jection as shown in Figurg.g(b). P is a3 x 1 vector of world coordinates corresponding
to the pointp in the image O is optical center of the camer&.is a3 x 1 vector containing

world coordinates of ground projection Bf RearrangingZ.6) and @.7) yields

C31U—Ci1 C32U—Cqo X Ciy — U+ Z(Clg — Cs3 U)
C31V—Cy1 C32V—Coo y Coq — V+Z(Cy3 — C33V)
From the above equation it follows that

-1

X| | CGiU—Ci CpU—Cpy Ci4 — U+ Z(Ci3 — C33U) (2.11)

y C31V—0Cy1 C32V— Cpo Cas — V+ Z(Cy3 — C33V)
SinceG lies on the ground (or at least sufficiently close), we canmat@its 3D coordinates
by substitutingg = 0 (corresponding to the road plane) in the above equaB@ndG have
same X, y) coordinates. Now, we know the image coordingdte$ the world pointP along
with its (x, y) coordinates, and the camera calibration parameéersSubstituting these

values into equation2(6), (2.7), we solve forz:

7 = p he 2.12
UGs —C
hy = e (2.13)
I VG3 — Co3

he — Cig — UG+ (C11 — UG )X+ (Cla —UGCs2) Y (2.14)

Cos —V Gy + (Cop —VG31) X+ (Co2 —VGC32) Y

For this technique to work, a simple box-model for the vedgadk assumed. A vehicles
is modelled using five rectangular surfaces as shown in €iguc). Two such models
have been used to represent cars and heavy vehicles. Donsridi corresponding mod-
els are computed using the calibration information (in préipn to the lane width). The
calibration process described in sectibi.2is based on human judgment and therefore

will not be perfect. Moreover, the objective of finding woddordinates of points is to be
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(b)

Figure 2.7: Error in height estimation caused by long shadow

able to segment the vehicles based on the approximatedaaaitihe feature points in the
world coordinate system. Estimates of the world coordmateler these conditions would
not be accurate enough to use detailed shape models fortirese

As shown in Figure.8, the rate of change of error in the location backprojectethen
road increases non-linearly with increasmgr his relationship is derived in Appendix
It can be seen that for the feature points which are closdrgodad, an error in estimation
of heightz results in comparatively less error in the estimation ofld@oordinates, as
compared to that of features higher up. The technique exgdiain this section works for
points lying on any of the four surfaces of a vehicle which@téogonal to the road plane.
Thankfully, in practice, features that are successfulliedied and tracked rarely belong
to the top surface, primarily due to insufficient texture ancelatively small projection
in the image. After estimating height of all the featuresngsihis technique, features
which are close to the road surface (havingd o whered is a user defined parameter)
are selected astable features In our previous work 14], stable features were selected
based on an additional criterion of low variance in heighingation for each frame of the
block. Neglecting the variance criterion reduced the nunalbeomputations without any

noticeable degradation in the segmentation results.
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de/dz
o
T

stable features

z =10m
camera
distance =20 m

0 1 2 3 4 5 6

Figure 2.9: Estimating world coordinates using rigid moti€Coordinates oP are unknown.Q is a stable
feature point with known world coordinates

2.2.4 World Coordinates from Multiple Frames

Factors like occlusion and shadows introduce significamor @én the height estimates of the
feature points obtained using the technique presenteciprigvious section (Figur27).
Stable features are used to estimate the world coordin&tes oest of the features using
rigidity constraints and translational motion model.

A line in 3D can be represented in a parametric form as:

P:PR+(X[PH—PR]
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where,Pr andPy are any two points on the line, adis a scalar which defines location
of a point along the line. The above representation simplthe equations to follow.

As shown in Figure.9, we consider two point$? andQ which undergo a translational
motion fromP?, Q" at the initial frameF° to P!, Q' at frameF". If Q is one of the stable
features, then its real world coordinates are known for bleghframes. Let us represent

world coordinates foP using parametric form of the equation of a line on which islie

P’ = PR+ a’[P5— Py (2.15)

P' = Pi+a'[Py—Py (2.16)

Where,Pr and Py are back projections d? atz = 0 andz = h obtained using4.11).
Value ofh is chosen as thecoordinate of one of the four upper control points used in the
calibration process. Fdt to be on the same rigid body &% the following condition must

be satisfied:
Pt o PO _ Qt . QO

i.e., both points undergo the same translation. Repreggintiparametric form,

{Pr+a' [Py —Pal} — {Pr+a’ [Py — Prl} = Q' — Q" (2.17)

From our assumption that the road is flat, it follows that dufempoint on a vehicle will
travel parallel to the road surface. This implies thabordinate oP has to be the same in

both frames.

which can be represented as
Pg, +a’ [P, — Pr] = Pg, +a' [P, — Pg]

By definition,
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PSZ = p;z =0
and
PO =P. =h

Substituting, we get
a’h=ath= a’=0a'

The assumption that the road surface is flat is essentiah&albove relationship to hold.

Substitutingy = o = o' in the previous equation,
PL— P4+ a {IPy — Pl — [P~ PRI} = Q' - Q"

Following the notation of Appendik, let

Ap, = PL—PS (2.18)
Ap, = P, —P (2.19)
Ag = Q'-Q° (2.20)

Substituting we get,
APR +a [APH - APR] = AQ

Solving fora yields,

[k, = ApJT[Ag — Apy]
“ T [Ar, — ApJT[Ap, — Apy (2.21)

Froma, the world coordinates d® at any time instant can be obtained as

P= PR + « [PH — PR] (222)

Using the known world coordinates of the stable featureBmeses for the non-stable

feature points are obtained using the above relationship.
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Let Q,,Q,,...,Q, be the stable features and Rtbe a feature for which the world
coordinates needs to be estimated. World coordinatésare estimated with respect to

eachQ,.
[APH — APR]T[AQk - APR]
[APH - APR]T[APH - APR]

Pc=Pr+ [P — Pg| (2.23)

Finally, we choose,

P = min {Wg || Pc— Qp Il +We[Ap, — Ag]T[Ap, — Ag ]} (2.24)

wherek=1,2,...,s

In the above equatio®, represent& x 1 vector ofx andy world coordinates of. The first
term weighted by, is the Euclidean distance iandy betweenP, andQ,. The second
term, weighted byv,, is the squared trajectory error betwdgrandQ, at estimated world
coordinates. Only th& andy coordinates are used for calculating the Euclidean distanc
to avoid penalizing a feature point for being at a higher aiewn from the road surface.

World coordinates for all the unstable features are eséichiat the same manner.

2.2.5 Affinity Matrix and Normalized Cuts

We form the affinity matrix composed of three components, elgrthe 3D Euclidean
distance in world coordinates, difference in trajectorg &ime background content mea-
sure Euclidean distance and background content are measurgpaa®rdinates of feature

points in the first frame of the block. The affinity matéxs computed as:

A = AP AE® AP (2.25)
(IR P12}

A = e 7 (2.26)
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{1ap, —2p]"18p ~2p ]}

so= € (2.27)
O@.p .80}
B 62
b= e b (2.28)
(2.29)

AP, is the 3D Euclidean distance betwehandP att = 0, i.e. the first frame of a
block.

Afj is the error in trajectories of featur®s andP;. Trajectories are computed in the
world coordinate frame. Consider two points which belongh® same vehicle. If the
estimated world coordinates for those two points are clogbd true values, then world-
trajectories for the points would match in spite of possitifferent image velocities. This
is observed more frequently in case of a heavy vehicle |giets.

AP, is the measure of background content between two featifp,p), 4o) is a func-
tion which measures number of background pixels that lie imeaconnectingp? and pjO
in the image j, is the background image at= 0.

The contribution of each factor to the affinity matrix is catied by corresponding
parameters. In Shi et a?}, 24], it is mentioned that for the normalized cut algorithm to be
computationally efficient, the affinity matrix (also callegight matrix) should be sparse.
Shi et al. P5, 24] achieve this by limiting the computation of edge weightsatéocal
neighborhood. In this work, feature points, rather thanma#ge pixels, represent nodes
in the graph. In addition, separate affinity matrices arenfxt for each of the connected
component in the segmented foreground mask image. Thiigeswaffinity matrices of
a reasonable size for applying the normalized cut algoritBrperiments were performed
using sparse affinity matrices, i.e. using only local edgeneations for a feature, but it
was observed that using full matrices produced bettertewithout a significant increase

in the computing time.
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2.2.6 Grouping With Incremental Cuts

Image segmentation based on low level cues cannot and shoudm to produce a com-
pletely correct segmentation. The objective should irsteato use the low-level coher-
ence of brightness, color, texture or motion attributesefguentially generate hierarchical
partitions. Mid-level and high-level knowledge can thenused to either confirm these
groups or select some for further attention. This attentionld result in further reparti-

tioning or grouping 24]. The same can be said for motion segmentation.

In this section a grouping procedure that we aatkemental cutsvill be explained for
segmenting a set of features into meaningful groups. The&eyof this step is to use the
calibration information to accept or reject a feature grbaped on its spatial properties.

Fig. 2.2.6shows the steps for grouping with incremental cuts.

function I ncrenental Cuts()
01 V=]

02 for each labele L

03 List = {k | L(px) = label}

04 while L not enpty,

05 Alist — {Aj | i € List, j € List}

06 increment— true

07 c—20

08 whi | e increment

09 c—c+1

10 [G1,G2,...,Gc] = Normal i zedCut s( Aiist, C)
11 for each Ge {G;,Gy,...,Gc}
12 if ValidGoup(G)

13 V—VaG

14 List < List© Listg

15 increment— f al se
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V is the set of valid segmented groups for the blo&ks the affinity matrix of all features
in the block.L is the labelled foreground mask corresponding to the fieshé in the block.
Image coordinates of a feature pokre represented k.
Nor mal i zedCut s( A, €) is a function which applies normalized cuts on the affinity
matrix A it to give c disjoint groups{G;, G, ...,G;}. @ and© are set addition and set
subtraction operations.ists is the list of features in grou@. Val i dG oup is a function

which returng r ue if all of the following conditions are satisfied for a gro@
1. Number of features i is more than a threshold value.
2. The centroid (in 3D coordinates) lies inside the detectione.
3. Dimensions of5 are within a valid range.

The range of valid dimensions for the two vehicle models aleutated using the cali-
bration information. For simplicity, only two possible skes are assumed; cars(car, SUV,

pick-up truck) and heavy vehicles (trailers, buses).

2.3 Correspondence Between Frame Blocks

In previous sections, we looked at how to track feature gdimough a block oF frames,
estimate corresponding world coordinates, and in the eod, tb group features using
incremental cuts. With the same set of parameters, we sdgroesecutive blocks of
frames. Blocks overlap by — 1 frames. For long term tracking, it is necessary to find cor-
respondence between detections within consecutive frdookd This section describes
an approach for finding the correspondence.

Consider two consecutive frame-blocksaandB with F frames in each block and over-
lapping byN frames. Let{a;,as,...,a, } denote feature groups segmented in a frame-
block A. Similarly, let{b,, b,, ..., by} denote feature groups segmented in frame-block

B. An undirected graph is formed with the segmented featurapg in both frame blocks
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(@) (b) (©)

Figure 2.10: correspondence events: (a) one-to-oree @plits intob; andh,. a, is declared missing. (a)
anda, merge intdb, . b is declared as new detection.

as nodes and the number of common feature points shared loyod geoups as the weight
of an edge connecting the respective nodes. If a group inrdaqus block shares fea-
tures with only a single group in the current block, then wi tbés a one-to-one unique
correspondence. A group A sharing features with more than one group frBnmdicates
splitting. Similarly, two or more groups iA sharing common features with a group in
B indicates merging. A group iA having no association is considered a missing event,
and a group irB having no association with any of the groups in the previdoshkis
considered as a new detection. If a group is associated vatieao-one correspondence
over (3, consecutive blocks, it is labelled as a reliable group. If@ug is missing forg,
consecutive blocks, it is labelled as inactive. Duringiatitation, each group in the first
frame-block is assigned a unique label. For each consecinime-block, a graph is con-
structed as mentioned above. To neglect minor segmentatiors, all the edges having
weightsw < wp, are removed. This is followed by searching for the unique-torene
correspondences between the groups of previous and cinaer-blocks. Groups of the
current block having unique correspondences are assipeddltels of respective groups
in the previous block. After processing all the unique asgmms, the graph is searched
for splits. For a split event, the edge with maximum weighised for correspondence and
the remaining edges are removed. Merge events are handleduhe way. Groups iA
which are no longer connected to any of the groupB iand are labelled as reliable, are
declared missing. Groups B which are not connected with any of the groupsAirare

declared as new detections. Each group that is declaredeas deatection is matched with
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Figure 2.11: (a)Initialized graph, gray edges with< wiin (b)b, is matched with missing groups, otherwise
assigned a new label. (c)Maximum-weight edges are seléatesplit and merge events. (o) is matched
with missing groups, otherwise assigned a new ladeis declared missing if it has been labelled as reliable,
discarded otherwise.

all the active missing groups to find a possible correspoteletf a correspondence with

missing groups is not found, the group is assigned a new.label



Chapter 3

Experimental Results

To judge the improvement in segmentation by using 3D coatds) a sample frame-block
was analyzed using planar motion assumption. In this chseaftinity matrix was com-

puted with the assumption that all the feature points liehenroad plane. Feature points
higher up on the truck lie far in the back from their true lagatwhen backprojected on

the road. Using only the image velocities, or the planar améissumption, features which
are closer to the ground are not grouped together with tharesmwhich are higher up on
the vehicle. On the right, using the estimates of the worlardimates, most features that
belong to the truck are grouped together correctly. Restitteeaccomputations for the three

points shown in Figur8.1(c) are presented in Tab&

Figure 3.1: Better segmentation with world coordinates) u&ng planar motion assumption. (b) using
estimated world coordinates. (c) three points for analysis
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Quantity Planar Image 3D
Distance between P and Q 13.48 units | 22.44 pixels 11.21 units
Distance between P and R 16.13 units | 28.87 pixels 6.31 units
Trajectory difference in P and Q0.1 units 7.43 pixels 0.2 units
Trajectory difference in P and R 4.2 units 6.22 pixels 0.05 units

Table 3.1: Improved segmentation with 3D information.

The columns show the values computed using the planar massamption, image
coordinates, and the estimates of world coordinates résplc With planar motion as-
sumption, both the distance and the trajectory differeretevéenP andQ is less tharP
andR. This explains the grouping of P and Q together in FigBiHa). The distances
computed using world coordinates are closer to the trueegallihis explains the grouping
of PandQ in (a). Using the 3D informatior? andR are grouped together correctly a@d
belongs to a different group as shown in (b).

The algorithm was tested on four grayscale image sequereaeh, containing 1200
frames captured & frames per second. The camera was placed on an approxirfiately
pole on the side of the road. The sequences were digitiz8d0ak 240 resolution. No
preprocessing was done to suppress shadows or to stalsbtasional camera jitter. For
each sequence, offline camera calibration was performexjéaiged earlier.

The first sequence was captured on a clear day. Vehiclesaadliing in three lanes
and there are moderate moving shadows. Some results frosethence are shown in
Figure3.2 Frameb592 demonstrates the ability of the algorithm to correctly detnd
track a vehicle which is severely occluded by another vel(lsmall vehicle is occluded
by a large trailer in the adjacent lane). The vehicle is abetuthroughout the detection
zone, and appears to be moving with almost the same speedtad the trailer. In frame
178, a truck and a car travelling next to each other are segmeraedctly even when
the shadow of the truck results in merging of the two vehiolethe foreground mask. In

frame 182, some of the features on the car are lost, and the car is midsia to lack of
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Figure 3.2: Sequenck(a) frame35 (b) frame35 zoomed (c) framé&92 (d) frame592 zoomed.

(b)

Figure 3.3: Sequence(a) framel78 (b) framel82 (c) frame183.
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(b)

Figure 3.4: Sequence(a) frame295 (b) frame303 (c) frame310.

sufficient reliable features. However, in fram&3, the new detection is matched with the
missing groups and associated with the correct missingpgralihough both the vehicles
are detected and tracked, the segmentation is not perfemticeNthe two feature points
on the truck that are grouped with the car. The estimates ofidwmordinates for both
the features are incorrect. When computing the world coatds) minimum value for the
equation £.24) was obtained for a stable feature belonging to the car. Meuyéhe feature
at the back end of the truck is correctly grouped with the oéshe features. In frames
295-310, the two vehicles travelling in the middle lane, are not dieté. The reason for
these missed detections is that neither of the vehicleshegaminimum required number
of features. Having a low threshold on this number resultsvers-segmentation. Setting
a higher threshold avoids detection of spurious groups atctst of missing a vehicle
occasionally. During the experiments, it was observedtinagt of the missed detections
were for dark colored vehicles (due to lack of sufficient tegtin the image).

The second sequence shows a four-lane highway with thealastdlocked for main-
tenance work. The lane closure results into a slow movinfjdraith vehicles traveling
close to each other. The sequence was captured during digtetion for studying the ef-
fect of a workzone on freeway traffi€]. Some of the frames from the sequence are shown
in Figure3.5.

In frame 72, the algorithm successfully segments the trailer and thallsmvehicle

traveling close to it. It might appear that a vehicle in th&t lane has been grouped with
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Figure 3.5: Sequence(a) frameb8 (b) frame72 (c) framel84 (d) frame240 (e) frame310 (f) frame 330.
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(b)

Figure 3.6: Sequencg frame 10 (a) moving shadow of the truck is detected as a vehicle, (tiingea
threshold on minimum height of a group removes the group éarivy shadow.

the trailer, but it is the load that the trailer is carryinglarot a different vehicle. Frames
310 and330 show segmentation in the presence of large vehicles. InefBdih, the white
suburban is occluded for most of the frame-block by thedraind the vehicle traveling
ahead of it resulting in a missed detection.

The third sequence was found to be more challenging. Vehdest long shadows
making the process of segmentation based of size-cortsttznder. One simple method
was tested for detecting and removing groups that belongadawvs as shown in Figure
3.6. If the height of a group is below a threshold value, it is sifisd as a shadow group and
is discarded. Having zero as the threshold (which is thaalgt correct) does not yield
the desired results, since the estimation process is basduecapproximate calibration
along with simple assumption for the shape of vehicles tiegpin height estimation error.

If the threshold is set higher, more shadow-groups are theteand discarded at the cost
occasionally detecting a small vehicle (e.g. a compactspar) as a shadow group.

Segmentation results are shown for frarmés to 315 in Figure3.7. In frame302, a
truck is correctly segmented. By frard@s, enough features are reliably tracked to segment
the occluded trailer. In fram&l 1, the pickup truck is detected. Note that the entire pickup
truck is in the shadow cast by the trailer. All the three vidsare detected as a single

foreground object as a result of long shadows.
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Figure 3.7: Sequence(a) frame302 (b) frame302 zoomed (c) fram&08 (d) frame308 zoomed (e) frame
311 (f) frame311 zoomed.
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SequenceC | T | O | DC DT DO| FP
1 116/ 9 |19 | 114 (98%) | 9(100%) |16 |4
2 120/ 8 | 17 || 115(96%) | 7 (88%) 11 | 4
3 57 |7 |11 || 53 (93%) | 6 (86%) 6 |5
4 43 |3 |9 | 43(100%) | 3(100%) |6 |2

Table 3.2: Accuracy on sequences. The columns show the segjusumber of cars (C), number of trucks
(T), number of occluded vehicles (O), number of cars tragk®d), number of trucks tracked (DT), number
of occluded vehicles detected and tracked (DO) and numifaisef detections (FP) respectively.

The fourth and the last sequence was captured for the woekztoigly. The images are
noisy compared to the previous sequences due to the presidioge Vehicles are traveling
close to each other at low speeds. Three frames of the resushawn in Figure3.8. In
all the three cases shown here, vehicles under partial siodare segmented correctly.

Quantitative assessment of the results on all the sequenpessented in Tabla.
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(f)

Figure 3.8: Sequence(a) frame415 (b) frame415 zoomed (c) framé&60 (d) frame560 zoomed (e) frame
756 (f) frame 756 zoomed.



Chapter 4

Conclusion

Most approaches to segmenting and tracking vehicles fromateisary camera assume
that the camera is high above the ground, thus simplifyiegpitoblem. A technique has
been presented in this thesis that works when the cameraibat angle with respect to
the ground and/or is on the side of the road, in which caseustxis are more frequent.
In such a situation, planar motion assumption for vehidesalated, especially in case of
heavy vehicles like trailers. The approach proposed isthagen grouping tracked features
using a standard segmentation algorithm. A novel part otebbnique is the estimation
of the 3D world coordinates of features using a combinatibhazkground subtraction,
offline camera calibration (for a single camera), and rigidonstraints under translational
motion. Experimental results on real sequences show thigyaifithe algorithm to handle
the low-angle situation, including severe occlusion.

Some of the aspects of the proposed algorithm need furtladysas and improvement.
At the heart of the algorithm is the feature point trackerptaving the tracker to handle
intensity changes resulting from static or moving shadowlisensure more features that
are tracked reliably. Explicit shadow suppression step improve the accuracy of the
segmentation. A very simple approach has been adopteddociasing the results between

the frame-blocks. The approach is based solely upon the euailttommon features and
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is susceptible to errors easily. Using the spatial proxiraitd motion information is likely
to help the association step in making correct decisiong algorithm was implemented
and tested in Matlab, except for the feature tracking c@fle $ince the bulk of the core
computations are performed using nested loops, implengettie algorithm in a compiled

environment is expected to yield a better performance.
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Appendix A

Notation Used

p: 2 x 1 vector of image coordinates of a point.

: 3 x 1 vector of homogeneous image coordinates of a point.

o

P : 3 x 1 vector of world coordinates of a point.

: 4 x 1 vector of homogeneous world coordinates of a point.

mv)

A : 3 x 4 Camera calibration matrix.
Pt: 3 x 1 vector of world coordinates of poift at timet.

Ap : 3 x 1 translation vector for poir® between first and last frames of a frame block.



Appendix B

Assumptions

For the proposed approach, following assumptions have ineeie.

[ —

. Two classes of vehicles are assumed (cars, SUVSs etc. aleild)

2. Road is assumed to be straight and flat.

3. Translational motion has been assumed to model motioalothes.
4. A perspective-projective pinhole camera model is assume

5. Itis assumed that at least one point feature, which iedioshe road surface (low-

height), is successfully tracked for each vehicle.

6. Absence of long shadows

Out of these assumptions, the first two assumptions arenabkoin case of vehicles trav-
eling on a highway. The fourth assumption, which appearsta btrong one, is found to
be satisfied in practice. The last assumption has been maderfeenience. The issue of
detecting and suppressing static as well as moving shadasvbden postponed for future

work.



Appendix C

Mapping error as the function of height

from road surface

Figure C.1: Mapping errae as the function oZ

Consider a poinP in the scene with its ground projecti®y. Py is at a distance from
the base of the camer@y andZ. are distances d? andC respectively from the ground
plane. Assuming (erroneously) that all the points lie onrtiesl surface, the image Bfis

assumed to correspond with the world pd#at
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dte _ _d
Zc Zc—Zp
_ Zpd
€= Zc—Zp

The error due to violation of the planar motion assumptianeases with the distance of a
point from the road surface and the distance between that pod the camera measured

along the road surface. Differentiating above equatioh waspect t&p yields:

de Zed (C.1)

0Zp  (Zc— Zp)?

de/dz,,
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