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ABSTRACT

A novel method is presented for visually monitoring a highway when the camera is

relatively low to the ground and on the side of the road. In such a case, occlusion and

the perspective effects due to the heights of the vehicles cannot be ignored. Features are

detected and tracked throughout the image sequence and thengrouped together using a

standard algorithm. The key part of the proposed system is toestimate the 3D world co-

ordinates of feature points on the vehicles from a single camera. Experimental results on

different highways demonstrate the system’s ability to successfully segment and track ve-

hicles even in the presence of severe occlusion and significant perspective changes.
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Chapter 1

Introduction

Increase in demand for travel on highways has seen an explosive growth over the years.

It is no longer feasible to merely build more roads to meet this ever increasing demand.

Although it will be inevitable to augment the current infrastructure over the long term,

to address the urgent needs it is necessary to utilize the existing infrastructure more effi-

ciently. As a result, Intelligent Transportation Systems (ITS), which is an interdisciplinary

technology that helps in design, analysis and monitoring oftraffic networks, has received

a lot of attention. Throughout the U.S., ITS technology is being used at several locations

for automated traffic monitoring and incident detection applications (details can be found

at http://www.its.dot.gov/). Most ITS are designed using readily available technology (sen-

sors, communication etc.) which makes them reliable and useful. Proven credibility in

recent years has made ITS an integral part of every modern transportation system.

In modeling traffic networks, parameters such as vehicle count, speeds, headway (dis-

tance between consecutive vehicles) and truck percentage play a key role. Using special-

ized sensors to estimate these parameters has gained popularity over manual data collection.

A study of different type of sensors in traffic monitoring applications is reported in [18].

A summary of advantages and disadvantages of different types of sensors is presented in

Table1. Video sensors (cameras) are rich in information and offer wide area detection with
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a single sensor. Unlike loop detectors, traffic interruption is not required for the installation

and maintenance.

1.1 Related Work

The use of image processing for traffic surveillance was initiated in the mid 1970s in the

United States and abroad, most notably in Japan, France, Australia, England, and Belgium

[19]. The hardware and the algorithms used for estimating traffic parameters have seen a

great improvement over the years. Existing commercial systems use a combination of in-

cident detection techniques (detecting changes in image intensities at predefined locations)

and heuristics to estimate quantities such as vehicle countand queue length. A much harder

problem, but with more potential is tracking, which still remains an active research area.

At this point we will review some of the commercial and research oriented systems related

to traffic monitoring.

1.1.1 Commercial Systems

By the late 1980s, video imaging detection systems were marketed in the U.S. and else-

where, generating sufficient interest to warrant research to determine their viability as an

inductive loop replacement [20]. At present, there are a number of commercial systems

being used throughout U.S. for manual as well as automatic traffic monitoring and incident

detection. Two of the popular commercial systems are described below:

Autoscope Solo Pro:Autoscope has enjoyed popularity over the years for its reliability

and accuracy. The Autoscope Solo Pro is the latest version ofthe integrated camera and

processor from Image Sensing Systems, Inc. Autoscope videovehicle detection system has

continued to set the standard for accuracy, reliability, and flexibility. Market success and

market growth have attracted a handful of companies offering competing video systems.
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Type Advantages Disadvantages

Inductive loop
detector

• Low per-unit cost
• Large experience base
• Relatively good performance

• Installation and maintenance re-
quire traffic disruption

• Easily damaged by heavy vehi-
cles, road repairs, etc.

Microwave
(Radar)

• Installation and repair do not re-
quire traffic disruption

• Direct measurement of speed
• Multilane operation
• Compact size

• May have vehicle masking in
multilane application

• Resolution impacted by Fed-
eral Communications Commis-
sion (FCC) approved transmit fre-
quency

• Relatively low precision
Laser • Can provide presence, speed, and

length data
• May be used in an along-the-road

or an across-the-road orientation
with a twin detector unit

• Affected by poor visibility and
heavy precipitation

• High cost

Infrared • Day/night operation
• Installation and repair do not re-

quire traffic disruption
• Better than visible wavelength

sensors in fog
• Compact size

• Sensors have unstable detection
zone

• May require cooled IR detector
for high sensitivity

• Susceptible to atmospheric ob-
scurant and weather

• One per lane required
Ultrasonic • Can measure volume, speed, oc-

cupancy, presence, and queue
length

• Subject to attenuation and distor-
tion from a number of environ-
mental factors (changes in am-
bient temperature, air turbulence,
and humidity)

• Difficult to detect snow-covered
vehicles

Magnetometer • Suitable for installation in bridge
decks or other hard concrete sur-
faces where loop detectors cannot
be installed

• Limited application
• Medium cost

Video
processing

• Provides live image of traffic
(more information)

• Multiple lanes observed
• No traffic interruption for instal-

lation and repair
• Vehicle tracking

• Live video image requires expen-
sive data communication equip-
ment

• Different algorithms usually re-
quired for day and night use

• Possible errors in traffic data tran-
sition period

• Susceptible to atmospheric ob-
scurant and adverse weather

Table 1.1: Performance comparison among existing incidentdetection technologies [18]
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In the larger competition for an above-ground detection solution alternative to in-ground

loops, video detection systems have been a clear winner [12]. This system consists of a

color camera, integrated machine vision processor, and a zoom lens. Autoscope is used

as a video alternative to loop detectors for estimating traffic parameters such as vehicle

counts, speeds, headways and turning counts. A user specifies detection zones in the im-

age and the algorithm detects the presence of a vehicle in a detection zone. According to

the Autoscope specifications, for optimal performance, thecamera should be placed at13

meters (40 feet) above the road surface. In situations of high traffic congestions however,

the camera is usually mounted much higher.

Vantage :This technology is developed by Iteris. Similar to Autoscope, Vantage cameras

are placed at an optimal location and virtual detection zones are monitored inside the im-

age by the algorithm. From the results reported in [21], Autoscope was found to be more

accurate in similar traffic conditions.

1.1.2 Research in Vehicle Tracking

Applying techniques of motion segmentation for tracking vehicles has been an interesting

application of computer vision. A number of different approaches have been proposed in

the past, each having its own advantages and shortcomings. Approaches which assume

that objects to be tracked (vehicles) have already been initialized are not considered in the

following discussions, since such systems can not be used inautomatic traffic analysis.

Techniques used for vehicle detection and tracking can be classified into following popular

approaches:

Blob Tracking. In this approach, a background model is generated for the scene. For each

input frame, the absolute difference between input frame and the generated background

image is processed to extract foreground blobs corresponding to the vehicles on the road.
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Variations of this approach have been proposed in [10, 17, 6]. Gupte et al. [10] use adap-

tive background subtraction to extract a foreground objectmask. The threshold for binary

image segmentation is chosen dynamically using the histogram of difference image. Ve-

hicle tracking is performed at two levels: region level and vehicle level. The association

problem between regions in consecutive frames is formulated as the problem of finding

a maximal weight graph. The authors reported90% detection accuracy and70% classi-

fication accuracy for the test data which was acquired on an overcast day to remove the

problem of shadows. Effectiveness of the algorithm in the case of significant heavy-vehicle

traffic (large trucks, trailers etc.) is unclear.

The vehicle tracking algorithm proposed by Magee [17], utilizes combination of per

pixel background model and a set of set of single hypothesis foreground models based on

a general model of object size, position, velocity, and colour distribution. Each pixel in

the scene is explained as either background, belonging to one of the foreground objects or

as noise. Ground-plane calibration information is used to strengthen the object size and

velocity consistency assumption. For improving tracking results, a prior model of typi-

cal road travel directions and speeds is built. This helps ininitializing the tracker with

the mean motion profile (as opposed to random value, or zero velocity) which is close to

the ground truth. Using color information and optimal camera location, impressive results

(99%− 100%) have been reported over a one minute sequence.

Active Contour Tracking. A closely related approach to blob tracking is based on track-

ing active contours (popularly knows assnakes) representing an object’s boundary. Vehicle

tracking using active contour models has been reported by Koller et al. [16]. The contour is

tracked using intensity and motion boundaries. A contour isinitialized for a vehicle using a

background difference image. Tracking is achieved using two Kalman filters, one for esti-

mating the affine motion parameters, and the other for estimating the shape of the contour.
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An explicit occlusion detection step is performed by intersecting the depth ordered regions

associated to the objects. The intersection is excluded in the shape and motion estimation.

Results are shown on real world sequences without shadows or severe occlusions. The al-

gorithm is limited to tracking cars.

3D-Model Based Tracking.Tracking vehicles using three-dimensional models has been

studied by several research groups [15, 11, 8, 23]. Some of these approaches assume aer-

ial view of the scene [23], and three dimensional wireframe models for different types of

vehicles are used for matching with edges detected in the image. In [8], a single vehicle is

successfully tracked through a partial occlusion. Applicability of the model based approach

for congested traffic scenes is not clear.

Markov Random Field Tracking.An algorithm for segmenting and tracking vehicles in

low-angle frontal sequences has been proposed by Kamijo et al. [13]. In their work, the im-

age is divided into8×8 pixel blocks, and a spatiotemporal Markov random field (ST-MRF)

is used to update an object map using the current and previousimage. Motion vectors for

each block are calculated, and the object map is determined by minimizing a functional

combining the number of overlapping pixels, the amount of texture correlation, and the

neighborhood proximity. The algorithm does not yield 3D information about vehicle tra-

jectories in the world coordinate system, and to achieve accurate results it is run on the

sequence in reverse so that vehicles recede from the camera.The accuracy increased two-

fold when the sequence was processed in the reverse order, thus it is not suitable for on-line

processing when time-critical results are required. The authors found that the low-angle

scenario is indeed a challenging problem.

Feature Based Tracking.In this approach, instead of tracking a whole object, sub-features

of an object are tracked. The method is useful in situations of partial occlusions, where
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only a portion of an object is visible. The task of tracking multiple objects then becomes

the task of grouping the tracked features based on one or moresimilarity criteria. Beymer

et al.[4] have proposed a feature tracking based approach for the task of traffic monitoring

application in [4]. In their approach, point features are tracked throughoutthe detection

zone specified in the image. Feature points which are trackedsuccessfully from entry re-

gion to the exit region are considered in the process of grouping. Grouping is done by

constructing a graph over time. Vertices represent sub-feature tracks and edges represent

grouping relationship between tracks. A sub-feature is initially connected to all the neigh-

boring within certain radius in the image plane. Through relative motion, edges repre-

senting motion disparity are broken. To compensate effectsof depth, a single road-plane

homogrpahy mapping is used. The algorithm was implemented on multi-processor digital

signal processing (DSP) board for real-time performance. Results have been reported for

day and night sequences with varying levels of traffic congestion.

1.1.3 Performance Factors

Some of the performance issues that exist in the problem of automated traffic monitoring

are the following:

• Location of the Camera.In case of most systems, the camera needs to be placed high

above the ground looking down at the vehicles. This serves two purposes,1) field of

view of the camera increases with its distance from the ground2) limits occurrences

and severity of occlusions.

• Traffic Conditions.When the traffic is free flowing, vehicles are well separated. In

that case, tracking is relatively easy. When traffic is movingslowly, vehicles travel

close to each other resulting into more occlusion events. Performance of most of the

systems degrade in such situations. The only algorithm thatis designed specifically

for such situations is the one proposed by Beymer et al.[4].



8

• Truck Percentage.A large vehicle often occludes nearby smaller vehicles. In the

sequences used for testing the algorithm, it can be seen thata large truck or a trailer

traveling in the first lane (the lane closet to the camera) occludes the vehicles traveling

in the next lane almost completely. In addition, heavy vehicles often result into

multiple counts in case of trip-detection type systems.

• Number of Lanes.For the situation in which camera is placed at the side of the road,

results are more accurate for the lanes closer to the camera.

• Moving Shadows.Moving cast shadows of vehicles result into two or more vehicles

merging into a single foreground object, thus reducing the accuracy of the system.

• Lighting Conditions.Different algorithms are required for daytime and nighttime. A

notable exception to this is the algorithm proposed by Beymeret al [4].

• Weather Conditions.Reflection of the headlights on a wet road results into wrong ve-

hicle counts. In case of a snow or a rain, segmenting the foreground objects becomes

more difficult.

The commercial systems mentioned in the previous section are designed to be integrated

with a traffic management system or similar specialized applications (e.g. toll-gate moni-

toring, surveillance). For such projects adding the required infrastructure (e.g. mounting

poles for the cameras) is a viable option. It is not always feasible, however, to place the

camera at a high vantage point. For example, to gain knowledge about the impact of, say,

building a shopping center on neighboring roads and intersections, it is common to place a

camera on a portable tripod on the side of the road to gather data about the current traffic

patterns. The transient nature of such a study precludes expensive mounting equipment and

strategic placement [14]. Absence of tall structures in rural areas is another situation where

placing the camera at a high vantage point is difficult. When the camera is at a low angle,

the planar motion assumption (motion in the road plane) is violated. All the techniques
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High angle Low angle

Figure 1.1: High angle vs. low angle situation.

discussed in the previous section assume planar motion for the vehicles with the exception

of the approach followed by Kamijo et al.[13].

1.2 Definitions

For better understanding of the rest of the material, some definitions are presented below:

Feature point A point location in the image having some kind of discerniblequality (e.g.

a corner).Feature pointandfeaturewill be used interchangeably in rest of this thesis.

Preimage A unique point in the world corresponding to a point locationin the image.

World coordinate system A three dimensional Euclidean coordinate system defined by

the user in the offline calibration process.

Low-angle view View from the camera closer to the ground and looking almost parallel

to the road.

Frame-block A set of consecutive frames in the sequence, also referred toas a block of

frames.



Chapter 2

Approach

The sequence is assumed to be taken from a single grayscale camera pointing at the road

from the side. The task of segmenting and tracking vehicles in low-angle cluttered scenes

is formulated as a feature tracking and grouping problem. Feature points are tracked in the

image sequence using a standard technique followed by estimation of 3D world coordinates

for those points, which are then grouped using a standard segmentation technique. The

novelty of this work is the estimation of 3D coordinates. Therest of the chapter described

this approach in detail.

2.1 Offline Calibration

Calibration is required to estimate 3D world coordinates forcorresponding 2D points in

the image. The calibration process described below is for a single camera and does not re-

quire knowledge about the camera specifications such as focal length or sensor dimensions.

The only information that is needed is six or more point correspondences, which makes it

possible to process pre-recorded sequences captured from unknown cameras.
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2.1.1 Perspective-Projective Camera Model

We assume a perspective-projective pinhole camera model. The general relationship be-

tween an object point measured with respect to a user-selected world coordinate system

and its image plane point is denoted by a3 × 4 homogeneous transformation matrix [22].

This matrix will be referred as the camera calibration matrix C:

p̂ = C P̂, (2.1)

where,p̂ = [ uw vw w]T andP̂ = [ x y z 1 ]T are vectors containing homogeneous

coordinates of image point,p = [ u v]T and world pointP = [ x y z]T respectively.

Representing the matrix with corresponding entries, we get




u w

v w

w




=




c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34







x

y

z

1




(2.2)

BecauseC is unique only up to a scale factor, we normalize it by fixing the scale factor

c34 = 1.

Expanding the above equation then yields

u =
c11x + c12y + c13z+ c14

w
(2.3)

v =
c21x + c22y + c23z+ c24

w
(2.4)

w = c31x + c32y + c33z+ 1 (2.5)

Substitutingw into first two equations and rearranging leads to

u = x c11 + y c12 + z c13 + c14 − u x c31 − u y c32 − u z c33 (2.6)
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v = x c21 + y c22 + z c23 + c24 − v x c31 − v y c32 − v z c33 (2.7)

These equations define a mapping from the world coordinates to the image coordinates.

2.1.2 Calibration Process

The image coordinates of a point can be calculated from its world coordinates and camera

calibration matrix,C, which consists of11 unknown parameters. Knowing the world coor-

dinates and the image coordinates of a single point yields two equations of the form (2.6)

& (2.7). Six or more points in a non-degenerate configuration lead to an over-determined

system:




x1 y1 z1 1 0 0 0 0 −u1 x1 −u1 y1 −u1 z1

0 0 0 0 x1 y1 z1 1 −v1 x1 −v1 y1 −v1 z1

x2 y2 z2 1 0 0 0 0 −u2 x2 −u2 y2 −u2 z2

0 0 0 0 x2 y2 z2 1 −v2 x2 −v2 y2 −v2 z2

...
...

...
...

...
...

...
...

...
...

...

xn yn zn 1 0 0 0 0 −un xn −un yn −un zn

0 0 0 0 xn yn zn 1 −vn xn −vn yn −vn zn







c11

c12

c13

c14

c21

...

c33




=




u1

v1

u2

v2

...

un

vn




(2.8)

which can be solved using a standard least squares technique.

The offline calibration process depends upon the user-specified point correspondences

for the calibration process. For improving the accuracy, itis desired that the world coor-

dinates are derived from the actual measurements of the scene, for example, having place

markers at known distances. For cases where this information is not available (e.g. pre-

recorded data), an approximation can be done using standardspecifications such the width

of a lane and length of a truck. Gupte et al. [10] have developed a tool to calibrate the road

surface with an arbitrary world coordinate system. Our calibration tool, which is shown in

Figure2.1, is similar to that developed by Gupte et al. [10], except that in their work the
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Figure 2.1:Our calibration tool.

tool was used to find a planar mapping between the points on theroad and the image points;

whereas in our case, the calibration tool is being used to estimate a perspective mapping.

An example of the calibration process is shown in Figure2.2. First, the user places a

marker across the width of the road and perpendicular to the lane markings as shown in

Figure2.2 (a). With the marker position unchanged, the sequence is advanced till the rear

end of the truck appears to align with the marker position on the ground. A new marker is

placed to align with the height of the truck (b). In the same frame a marker is placed on the

ground to align with the front end of the truck (c). Once again, the sequence is advanced

till the marker placed on the ground in (c) appears to align with the read end of the truck.

This is shown in (d). For the same frame, the marker is realigned with the front end of

the truck as shown in (e). A new marker is placed across the width of the road (f). One

more time, the sequence is advanced for the new marker to appear aligning with the truck’s

rear end. An additional marker is placed as shown in (g) in such a way that it appears to be

aligned with the height of the truck. The result looks as shown in (h). Using the dimensions

of a known type of vehicle is an approximate method for estimating world coordinates of

control points. Table2.1.2lists average lengths of some of the common vehicle types found

on the road. In addition, the information about lane width (e.g. 12 feet on an interstate) and

number of lanes is used. The calibration process is simple and usually takes around two

minutes to complete. Figure2.3shows calibration results for different sequences.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.2: Camera calibration process.
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1 Passenger Car 17.4 feet
2 Pickup Truck 19.1 feet
3 Buses 41.7 feet
4 4+ axle single units 51.2 feet
5 5-axle single trailer trucks 62.4 feet
6 6 or more axle single trailer trucks71.2 feet
7 5 or less axle multi trailer trucks 70.0 feet

Table 2.1: Average lengths of standard vehicle classes, as reported in smart loop technology demonstration
project webpage [1].

x

y

z

(a) (b)

(c) (d)

Figure 2.3: Offline calibration for different sequences.



16

2.1.3 Backprojections

The imaging process maps a point in three dimensional space into a two dimensional image

plane. The loss of dimension results in a non-invertible mapping. Given the calibration

parameters for the camera and the image coordinates of a single point, the best we can do

is to determine a ray in space passing through the optical center and the unknown point in

the world. Rearranging equations (2.6) & (2.7) yields equations for two planes in 3D space.

(u c31 − c11) x + (u c32 − c12) y + (u c33 − c13) z+ (u− c14) = 0 (2.9)

(v c31 − c21) x + (v c32 − c22) y + (v c33 − c23) z+ (v− c24) = 0 (2.10)

The intersection of these two planes is the ray in 3D passing through the point in the world

P, which is projected asp in the image plane. The problem is under-constrained since we

have two equations and three unknowns, namelyx, y andz. If we know eitherx, y or z, we

can solve for the other two using the image coordinates andC. In the sections to follow, we

will explore a simple technique to achieve this.

2.2 Processing a Block of Frames

In the algorithm proposed by Beymer et al. [4], the point features tracked successfully from

the entry region to the exit region are considered in the grouping step, which does not pose

a problem when the camera is placed at a high vantage point looking down on the road.

In the low-angle scenario in which we are interested, frequent occlusions and appearance

changes (as vehicles approach the camera) result in losing alarge number of features. As

a result, the number of features that are tracked for the whole extent of the detection zone

is not enough to achieve useful results. One way to overcome this problem is to process a

block of frames (typically5 to 20 frames per block) and to associate segmented vehicles

between the successive blocks. Features are tracked throughout a block ofF image frames,
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overlapping with the previous block byN frames. The length of a block is determined

by the average speed of the vehicles and the placement of the camera with respect to the

road. If the number of frames in a block is too small, a large number of features will

be tracked successfully throughout the frames in the block,but the motion information

will be insufficient for effective segmentation. On the other hand, using more frames in a

frame-block will yield more reliable motion information atthe expense of losing important

features. The proposed algorithm relies on human judgment to balance between these

tradeoffs.

The steps described in the following sections are performedon the features tracked over

a single block.

2.2.1 Tracking Features

Feature points are automatically selected and tracked using the Kanade-Lucas-Tomasi (KLT)

feature tracker [2], which computes the displacementd that minimizes the sum of squared

differences between consecutive image framesI andJ:

∫∫

W

[
I(x−

d
2
)− J(x +

d
2
)
]2

dx,

whereW is a window of pixels around the feature point. This nonlinear error is minimized

by repeatedly solving its linearized version:

Zd = e,

where

Z =
∑

x∈W

g(x)gT(x)

e =
∑

x∈W

g(x)[I(x)− J(x)],
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andg(x) = ∂ I(x)+J(x)
2

/∂x is the spatial gradient of the average image. These equations are

identical to the standard Lucas-Kanade equations [26] but are symmetric with respect to

the two images. As in [26], features are automatically selected as those points in the image

for which both eigenvalues ofZ are greater than a minimum threshold.

Among all the features that are tracked, those features which belong to the background

are discarded. This requires knowledge of the foreground objects. The process of extracting

foreground objects (blobs) is explained in the next section.

2.2.2 Background Subtraction

Background subtraction is a simple and effective technique for extracting the foreground

objects from the scene. The process of background subtractions involves initializing and

maintaining a background model of the scene, and subtracting the estimated background

image from the frame being processed. This is followed by thresholding the difference

image and morphological processing to yield foreground blobs. A review of several back-

ground modeling techniques is presented in [5].

A simple method of temporal median filtering produced satisfactory results for the test

sequences. More elaborate methods like mixture of Gaussians [9] or nonparametric kernel

density estimation [7] offer better accuracy for segmenting foreground in cluttered scenes.

For the scope of this research, the median filtering technique was chosen for its simplic-

ity and effectiveness. The median filter belongs to a generalclass ofrank filters. It is

frequently used in image processing for removing noise in animage. For background mod-

eling, we will perform one dimensional median filtering in time domain. For each pixel in

the background image, the median value is selected from the set of values observed at the

same pixel location in the previousn frames. Sample frames from two of the sequences

along with the generated background images are shown in Figure2.4.

For each frame-block, a binary thresholding operation is performed on the absolute

difference between background image and first frame of the block. The difference image
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sequence1 sequence2

frame1 frame60

frame55 frame180

frame55 frame75

Figure 2.4: Sample frames and estimated background images using temporal median filtering.
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(a)

(b) (d)

(c) (e)

Figure 2.5:Background subtraction: (a) generated background, (b)-(c) and (d)-(e): input frameand resul-
tant foreground mask

needs to be processed further (using morphological operations) to suppress false detections,

and to obtain closed foreground regions.

2.2.3 Stable Features from a Single Frame

It was shown in section2.1.2& section2.1.3that for a point in the image, we can estimate

the 3D coordinates of the corresponding world point using the calibration parameters and

at least one component of its world coordinates. A simple technique to achieve the same is

presented here which involves finding the vertical projection of a point on the road surface

in the image. The foreground mask generated in the previous step is used to find the pro-
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(a) (b)

(c)

Figure 2.6:Road projection: Projecting a feature on the road surface in the image for estimating its height.
(a) Input frame (b) foreground mask is used for ground projection (c) 3D model.p andg are image points
corresponding toP andG respectively.O is the optical center.
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jection as shown in Figure2.6(b). P is a3 × 1 vector of world coordinates corresponding

to the pointp in the image.O is optical center of the camera.G is a3× 1 vector containing

world coordinates of ground projection ofP. Rearranging (2.6) and (2.7) yields



c31 u− c11 c32 u− c12

c31 v− c21 c32 v− c22







x

y


 =




c14 − u + z(c13 − c33 u)

c24 − v + z(c23 − c33 v)




From the above equation it follows that




x

y


 =




c31 u− c11 c32 u− c12

c31 v− c21 c32 v− c22




−1


c14 − u + z(c13 − c33 u)

c24 − v + z(c23 − c33 v)


 (2.11)

SinceG lies on the ground (or at least sufficiently close), we can compute its 3D coordinates

by substitutingz = 0 (corresponding to the road plane) in the above equation.P andG have

same (x, y) coordinates. Now, we know the image coordinatesp of the world pointP along

with its (x, y) coordinates, and the camera calibration parametersC. Substituting these

values into equations (2.6), (2.7), we solve forz:

z =
hT

p hc

hT
p hp

(2.12)

hp =




u c33 − c13

v c33 − c23


 (2.13)

hc =




c14 − u c34 + (c11 − u c31) x + (c12 − u c32) y

c24 − v c34 + (c21 − v c31) x + (c22 − v c32) y


 (2.14)

For this technique to work, a simple box-model for the vehicles is assumed. A vehicles

is modelled using five rectangular surfaces as shown in Figure 2.6(c). Two such models

have been used to represent cars and heavy vehicles. Dimensions of corresponding mod-

els are computed using the calibration information (in proportion to the lane width). The

calibration process described in section2.1.2is based on human judgment and therefore

will not be perfect. Moreover, the objective of finding worldcoordinates of points is to be



23

(a) (b)

Figure 2.7: Error in height estimation caused by long shadows.

able to segment the vehicles based on the approximate location of the feature points in the

world coordinate system. Estimates of the world coordinates under these conditions would

not be accurate enough to use detailed shape models for the vehicles.

As shown in Figure2.8, the rate of change of error in the location backprojected onthe

road increases non-linearly with increasingz. This relationship is derived in AppendixC.

It can be seen that for the feature points which are closer to the road, an error in estimation

of heightz results in comparatively less error in the estimation of world coordinates, as

compared to that of features higher up. The technique explained in this section works for

points lying on any of the four surfaces of a vehicle which areorthogonal to the road plane.

Thankfully, in practice, features that are successfully detected and tracked rarely belong

to the top surface, primarily due to insufficient texture anda relatively small projection

in the image. After estimating height of all the features using this technique, features

which are close to the road surface (havingz ≤ δ whereδ is a user defined parameter)

are selected asstable features. In our previous work [14], stable features were selected

based on an additional criterion of low variance in height estimation for each frame of the

block. Neglecting the variance criterion reduced the number of computations without any

noticeable degradation in the segmentation results.



24

0  1  2 3 4 5 6
2

3

4

5

6

7

8

Z

de
/d

Z

Z
camera

 = 10 m

distance = 20 m  

stable features 

Figure 2.8: Rate of change of backprojection error as the function ofz

Figure 2.9: Estimating world coordinates using rigid motion. Coordinates ofP are unknown.Q is a stable
feature point with known world coordinates

2.2.4 World Coordinates from Multiple Frames

Factors like occlusion and shadows introduce significant error in the height estimates of the

feature points obtained using the technique presented in the previous section (Figure2.7).

Stable features are used to estimate the world coordinates of the rest of the features using

rigidity constraints and translational motion model.

A line in 3D can be represented in a parametric form as:

P = PR + α [PH − PR]
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where,PR andPH are any two points on the line, andα is a scalar which defines location

of a point along the line. The above representation simplifies the equations to follow.

As shown in Figure2.9, we consider two points,P andQ which undergo a translational

motion fromP0, Q 0 at the initial frameF0 to P t, Q t at frameFt. If Q is one of the stable

features, then its real world coordinates are known for boththe frames. Let us represent

world coordinates forP using parametric form of the equation of a line on which it lies.

P0 = P0
R + α 0 [P0

H − P0
R] (2.15)

P t = P t
R + α t [P t

H − P t
R] (2.16)

Where,PR andPH are back projections ofP at z = 0 andz = h obtained using (2.11).

Value ofh is chosen as thez coordinate of one of the four upper control points used in the

calibration process. ForP to be on the same rigid body asQ, the following condition must

be satisfied:

P t − P0 = Q t −Q 0,

i.e., both points undergo the same translation. Representing in parametric form,

{P t
R + α t [P t

H − P t
R]} − {P

0
R + α 0 [P0

H − P0
R]} = Q t −Q 0 (2.17)

From our assumption that the road is flat, it follows that a feature point on a vehicle will

travel parallel to the road surface. This implies thatz coordinate ofP has to be the same in

both frames.

P0
z = P t

z

which can be represented as

P0
Rz

+ α 0 [P0
Hz
− P0

Rz
] = P t

Rz
+ α t [P t

Hz
− P t

Rz
]

By definition,
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P0
Rz

= P t
Rz

= 0

and

P0
Hz

= P t
Hz

= h

Substituting, we get

α 0 h = α t h⇒ α 0 = α t

The assumption that the road surface is flat is essential for the above relationship to hold.

Substitutingα = α 0 = α t in the previous equation,

P t
R− P0

R + α {[P t
H − P0

H]− [P t
R− P0

R]} = Q t −Q 0

Following the notation of AppendixA, let

∆PR = P t
R− P0

R (2.18)

∆PH = P t
H − P0

H (2.19)

∆Q = Q t −Q 0 (2.20)

Substituting we get,

∆PR + α [∆PH −∆PR] = ∆Q

Solving forα yields,

α =
[∆PH −∆PR]

T[∆Q−∆PR]

[∆PH −∆PR]
T[∆PH −∆PR]

(2.21)

Fromα, the world coordinates ofP at any time instant can be obtained as

P = PR + α [PH − PR] (2.22)

Using the known world coordinates of the stable features, estimates for the non-stable

feature points are obtained using the above relationship.
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Let Q1, Q2, . . . , Qs be the stable features and letP be a feature for which the world

coordinates needs to be estimated. World coordinates ofP are estimated with respect to

eachQk.

Pk = PR +
[∆PH −∆PR]

T[∆Qk −∆PR]

[∆PH −∆PR]
T[∆PH −∆PR]

[PH − PR] (2.23)

Finally, we choose,

P = min
k

{
wd || P̃k − Q̃k ||2 + we [∆Pk −∆Qk]

T[∆Pk −∆Qk]
}

(2.24)

where,k = 1, 2, . . . , s

In the above equation,̃P represents2×1 vector ofx andy world coordinates ofP. The first

term weighted bywd is the Euclidean distance inx andy betweenPk andQk. The second

term, weighted bywe, is the squared trajectory error betweenPk andQk at estimated world

coordinates. Only thex andy coordinates are used for calculating the Euclidean distance

to avoid penalizing a feature point for being at a higher elevation from the road surface.

World coordinates for all the unstable features are estimated in the same manner.

2.2.5 Affinity Matrix and Normalized Cuts

We form the affinity matrix composed of three components, namely, the 3D Euclidean

distance in world coordinates, difference in trajectory and thebackground content mea-

sure. Euclidean distance and background content are measured using coordinates of feature

points in the first frame of the block. The affinity matrixA is computed as:

A = AD ⊗ AE ⊗ AB (2.25)

AD
i, j = e

{‖P0
i −P0

j ‖2}

σ2
d (2.26)
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AE
i, j = e

{[∆Pi
−∆Pj

]T [∆Pi
−∆Pj

]}

σ2
e (2.27)

AB
i, j = e

{λ(p0i ,p0j ,βf )}

σ2
b (2.28)

(2.29)

AD
i, j is the 3D Euclidean distance betweenP0

i andP0
j at t = 0, i.e. the first frame of a

block.

AE
i, j is the error in trajectories of featuresPi andPj. Trajectories are computed in the

world coordinate frame. Consider two points which belong to the same vehicle. If the

estimated world coordinates for those two points are close to the true values, then world-

trajectories for the points would match in spite of possiblydifferent image velocities. This

is observed more frequently in case of a heavy vehicle like trailers.

AB
i, j is the measure of background content between two features.λ(p0

i , p0
j , β0) is a func-

tion which measures number of background pixels that lie on aline connectingp0
i andp0

j

in the image.β0 is the background image att = 0.

The contribution of each factor to the affinity matrix is controlled by correspondingσ

parameters. In Shi et al.[25, 24], it is mentioned that for the normalized cut algorithm to be

computationally efficient, the affinity matrix (also calledweight matrix) should be sparse.

Shi et al. [25, 24] achieve this by limiting the computation of edge weights toa local

neighborhood. In this work, feature points, rather than allimage pixels, represent nodes

in the graph. In addition, separate affinity matrices are formed for each of the connected

component in the segmented foreground mask image. This results in affinity matrices of

a reasonable size for applying the normalized cut algorithm. Experiments were performed

using sparse affinity matrices, i.e. using only local edge connections for a feature, but it

was observed that using full matrices produced better results without a significant increase

in the computing time.
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2.2.6 Grouping With Incremental Cuts

Image segmentation based on low level cues cannot and shouldnot aim to produce a com-

pletely correct segmentation. The objective should instead be to use the low-level coher-

ence of brightness, color, texture or motion attributes to sequentially generate hierarchical

partitions. Mid-level and high-level knowledge can then beused to either confirm these

groups or select some for further attention. This attentioncould result in further reparti-

tioning or grouping [24]. The same can be said for motion segmentation.

In this section a grouping procedure that we callincremental cutswill be explained for

segmenting a set of features into meaningful groups. The keypart of this step is to use the

calibration information to accept or reject a feature groupbased on its spatial properties.

Fig. 2.2.6shows the steps for grouping with incremental cuts.

function IncrementalCuts()

01 V = [ ]

02 for each label∈ L

03 List = {k | L(pk) = label}

04 while L not empty,

05 AList← {Ai, j | i ∈ List, j ∈ List}

06 increment← true

07 c← 0

08 while increment

09 c← c + 1

10 [G1, G2, . . . , Gc] = NormalizedCuts(AList, c)

11 for each G ∈ {G1, G2, . . . , Gc}

12 if ValidGroup(G)

13 V← V ⊕G

14 List← List⊖ ListG

15 increment← false
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V is the set of valid segmented groups for the block.A is the affinity matrix of all features

in the block.L is the labelled foreground mask corresponding to the first frame in the block.

Image coordinates of a feature pointk are represented bypk.

NormalizedCuts(AList, c) is a function which applies normalized cuts on the affinity

matrix AList to give c disjoint groups{G1, G2, . . . , Gc}. ⊕ and⊖ are set addition and set

subtraction operations.ListG is the list of features in groupG. ValidGroup is a function

which returnstrue if all of the following conditions are satisfied for a groupG:

1. Number of features inG is more than a threshold value.

2. The centroid (in 3D coordinates) lies inside the detection zone.

3. Dimensions ofG are within a valid range.

The range of valid dimensions for the two vehicle models are calculated using the cali-

bration information. For simplicity, only two possible classes are assumed; cars(car, SUV,

pick-up truck) and heavy vehicles (trailers, buses).

2.3 Correspondence Between Frame Blocks

In previous sections, we looked at how to track feature points through a block ofF frames,

estimate corresponding world coordinates, and in the end, how to group features using

incremental cuts. With the same set of parameters, we segment consecutive blocks of

frames. Blocks overlap byF− 1 frames. For long term tracking, it is necessary to find cor-

respondence between detections within consecutive frame blocks. This section describes

an approach for finding the correspondence.

Consider two consecutive frame-blocksA andB with F frames in each block and over-

lapping byN frames. Let{a1, a2, . . . , an1} denote feature groups segmented in a frame-

block A. Similarly, let {b1, b2, . . . , bn2} denote feature groups segmented in frame-block

B. An undirected graph is formed with the segmented feature groups in both frame blocks
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Figure 2.10: correspondence events: (a) one-to-one (b)a1 splits intob1 andb2. a2 is declared missing. (c)a1

anda2 merge intob1. b2 is declared as new detection.

as nodes and the number of common feature points shared by a pair of groups as the weight

of an edge connecting the respective nodes. If a group in the previous block shares fea-

tures with only a single group in the current block, then we call this a one-to-one unique

correspondence. A group inA sharing features with more than one group fromB indicates

splitting. Similarly, two or more groups inA sharing common features with a group in

B indicates merging. A group inA having no association is considered a missing event,

and a group inB having no association with any of the groups in the previous block is

considered as a new detection. If a group is associated with aone-to-one correspondence

overβr consecutive blocks, it is labelled as a reliable group. If a group is missing forβm

consecutive blocks, it is labelled as inactive. During initialization, each group in the first

frame-block is assigned a unique label. For each consecutive frame-block, a graph is con-

structed as mentioned above. To neglect minor segmentationerrors, all the edges having

weightsw < wmin are removed. This is followed by searching for the unique one-to-one

correspondences between the groups of previous and currentframe-blocks. Groups of the

current block having unique correspondences are assigned the labels of respective groups

in the previous block. After processing all the unique associations, the graph is searched

for splits. For a split event, the edge with maximum weight isused for correspondence and

the remaining edges are removed. Merge events are handled the same way. Groups inA

which are no longer connected to any of the groups inB and are labelled as reliable, are

declared missing. Groups inB which are not connected with any of the groups inA are

declared as new detections. Each group that is declared as a new detection is matched with
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Figure 2.11: (a)Initialized graph, gray edges withw < wmin (b)b4 is matched with missing groups, otherwise
assigned a new label. (c)Maximum-weight edges are selectedfor split and merge events. (d)b2 is matched
with missing groups, otherwise assigned a new label.a2 is declared missing if it has been labelled as reliable,
discarded otherwise.

all the active missing groups to find a possible correspondence. If a correspondence with

missing groups is not found, the group is assigned a new label.
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Experimental Results

To judge the improvement in segmentation by using 3D coordinates, a sample frame-block

was analyzed using planar motion assumption. In this case, the affinity matrix was com-

puted with the assumption that all the feature points lie in the road plane. Feature points

higher up on the truck lie far in the back from their true location when backprojected on

the road. Using only the image velocities, or the planar motion assumption, features which

are closer to the ground are not grouped together with the features which are higher up on

the vehicle. On the right, using the estimates of the world coordinates, most features that

belong to the truck are grouped together correctly. Results of the computations for the three

points shown in Figure3.1(c) are presented in Table3

P 

Q 
R 

(a) (b) (c)

Figure 3.1: Better segmentation with world coordinates. (a) using planar motion assumption. (b) using
estimated world coordinates. (c) three points for analysis.
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Quantity Planar Image 3D
Distance between P and Q 13.48 units 22.44 pixels 11.21 units
Distance between P and R 16.13 units 28.87 pixels 6.31 units
Trajectory difference in P and Q0.1 units 7.43 pixels 0.2 units
Trajectory difference in P and R 4.2 units 6.22 pixels 0.05 units

Table 3.1: Improved segmentation with 3D information.

The columns show the values computed using the planar motionassumption, image

coordinates, and the estimates of world coordinates respectively. With planar motion as-

sumption, both the distance and the trajectory difference betweenP andQ is less thanP

andR. This explains the grouping of P and Q together in Figure3.1(a). The distances

computed using world coordinates are closer to the true values. This explains the grouping

of P andQ in (a). Using the 3D information,P andRare grouped together correctly andQ

belongs to a different group as shown in (b).

The algorithm was tested on four grayscale image sequences,each containing 1200

frames captured at24 frames per second. The camera was placed on an approximately9 m

pole on the side of the road. The sequences were digitized at320 × 240 resolution. No

preprocessing was done to suppress shadows or to stabilize occasional camera jitter. For

each sequence, offline camera calibration was performed as explained earlier.

The first sequence was captured on a clear day. Vehicles are travelling in three lanes

and there are moderate moving shadows. Some results from thesequence are shown in

Figure3.2. Frame592 demonstrates the ability of the algorithm to correctly detect and

track a vehicle which is severely occluded by another vehicle (a small vehicle is occluded

by a large trailer in the adjacent lane). The vehicle is occluded throughout the detection

zone, and appears to be moving with almost the same speed as that of the trailer. In frame

178, a truck and a car travelling next to each other are segmentedcorrectly even when

the shadow of the truck results in merging of the two vehiclesin the foreground mask. In

frame182, some of the features on the car are lost, and the car is missing due to lack of
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(a) (b)

(c) (d)

Figure 3.2: Sequence1 (a) frame35 (b) frame35 zoomed (c) frame592 (d) frame592 zoomed.

(a) (b) (c)

Figure 3.3: Sequence1 (a) frame178 (b) frame182 (c) frame183.
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(a) (b) (c)

Figure 3.4: Sequence1 (a) frame295 (b) frame303 (c) frame310.

sufficient reliable features. However, in frame183, the new detection is matched with the

missing groups and associated with the correct missing group. Although both the vehicles

are detected and tracked, the segmentation is not perfect. Notice the two feature points

on the truck that are grouped with the car. The estimates of world coordinates for both

the features are incorrect. When computing the world coordinates, minimum value for the

equation (2.24) was obtained for a stable feature belonging to the car. However, the feature

at the back end of the truck is correctly grouped with the restof the features. In frames

295-310, the two vehicles travelling in the middle lane, are not detected. The reason for

these missed detections is that neither of the vehicles has the minimum required number

of features. Having a low threshold on this number results inovers-segmentation. Setting

a higher threshold avoids detection of spurious groups at the cost of missing a vehicle

occasionally. During the experiments, it was observed thatmost of the missed detections

were for dark colored vehicles (due to lack of sufficient texture in the image).

The second sequence shows a four-lane highway with the last lane blocked for main-

tenance work. The lane closure results into a slow moving traffic with vehicles traveling

close to each other. The sequence was captured during data collection for studying the ef-

fect of a workzone on freeway traffic [3]. Some of the frames from the sequence are shown

in Figure3.5.

In frame72, the algorithm successfully segments the trailer and the smaller vehicle

traveling close to it. It might appear that a vehicle in the last lane has been grouped with
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Sequence2 (a) frame58 (b) frame72 (c) frame184 (d) frame240 (e) frame310 (f) frame330.
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(a) (b)

Figure 3.6: Sequence3 frame 10 (a) moving shadow of the truck is detected as a vehicle, (b) setting a
threshold on minimum height of a group removes the group formed by shadow.

the trailer, but it is the load that the trailer is carrying and not a different vehicle. Frames

310 and330 show segmentation in the presence of large vehicles. In frame 310, the white

suburban is occluded for most of the frame-block by the trailer and the vehicle traveling

ahead of it resulting in a missed detection.

The third sequence was found to be more challenging. Vehicles cast long shadows

making the process of segmentation based of size-constraints harder. One simple method

was tested for detecting and removing groups that belong to shadows as shown in Figure

3.6. If the height of a group is below a threshold value, it is classified as a shadow group and

is discarded. Having zero as the threshold (which is theoretically correct) does not yield

the desired results, since the estimation process is based on the approximate calibration

along with simple assumption for the shape of vehicles resulting in height estimation error.

If the threshold is set higher, more shadow-groups are detected and discarded at the cost

occasionally detecting a small vehicle (e.g. a compact sports car) as a shadow group.

Segmentation results are shown for frames300 to 315 in Figure3.7. In frame302, a

truck is correctly segmented. By frame308, enough features are reliably tracked to segment

the occluded trailer. In frame311, the pickup truck is detected. Note that the entire pickup

truck is in the shadow cast by the trailer. All the three vehicles are detected as a single

foreground object as a result of long shadows.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Sequence3 (a) frame302 (b) frame302 zoomed (c) frame308 (d) frame308 zoomed (e) frame
311 (f) frame311 zoomed.
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SequenceC T O DC DT DO FP
1 116 9 19 114 (98%) 9 (100%) 16 4
2 120 8 17 115 (96%) 7 (88%) 11 4
3 57 7 11 53 (93%) 6 (86%) 6 5
4 43 3 9 43 (100%) 3 (100%) 6 2

Table 3.2: Accuracy on sequences. The columns show the sequence, number of cars (C), number of trucks
(T), number of occluded vehicles (O), number of cars tracked(DC), number of trucks tracked (DT), number
of occluded vehicles detected and tracked (DO) and number offalse detections (FP) respectively.

The fourth and the last sequence was captured for the workzone study. The images are

noisy compared to the previous sequences due to the presenceof fog. Vehicles are traveling

close to each other at low speeds. Three frames of the result are shown in Figure3.8. In

all the three cases shown here, vehicles under partial occlusion are segmented correctly.

Quantitative assessment of the results on all the sequencesis presented in Table3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Sequence4 (a) frame415 (b) frame415 zoomed (c) frame560 (d) frame560 zoomed (e) frame
756 (f) frame756 zoomed.



Chapter 4

Conclusion

Most approaches to segmenting and tracking vehicles from a stationary camera assume

that the camera is high above the ground, thus simplifying the problem. A technique has

been presented in this thesis that works when the camera is ata low angle with respect to

the ground and/or is on the side of the road, in which case occlusions are more frequent.

In such a situation, planar motion assumption for vehicles is violated, especially in case of

heavy vehicles like trailers. The approach proposed is based upon grouping tracked features

using a standard segmentation algorithm. A novel part of thetechnique is the estimation

of the 3D world coordinates of features using a combination of background subtraction,

offline camera calibration (for a single camera), and rigidity constraints under translational

motion. Experimental results on real sequences show the ability of the algorithm to handle

the low-angle situation, including severe occlusion.

Some of the aspects of the proposed algorithm need further analysis and improvement.

At the heart of the algorithm is the feature point tracker. Improving the tracker to handle

intensity changes resulting from static or moving shadows will ensure more features that

are tracked reliably. Explicit shadow suppression step will improve the accuracy of the

segmentation. A very simple approach has been adopted for associating the results between

the frame-blocks. The approach is based solely upon the number of common features and
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is susceptible to errors easily. Using the spatial proximity and motion information is likely

to help the association step in making correct decisions. The algorithm was implemented

and tested in Matlab, except for the feature tracking code [2]. Since the bulk of the core

computations are performed using nested loops, implementing the algorithm in a compiled

environment is expected to yield a better performance.
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Appendix A

Notation Used

p : 2× 1 vector of image coordinates of a point.

p̂ : 3× 1 vector of homogeneous image coordinates of a point.

P : 3× 1 vector of world coordinates of a point.

P̂ : 4× 1 vector of homogeneous world coordinates of a point.

A : 3× 4 Camera calibration matrix.

P t : 3× 1 vector of world coordinates of pointP at timet.

∆P : 3× 1 translation vector for pointP between first and last frames of a frame block.



Appendix B

Assumptions

For the proposed approach, following assumptions have beenmade.

1. Two classes of vehicles are assumed (cars, SUVs etc. and trailers)

2. Road is assumed to be straight and flat.

3. Translational motion has been assumed to model motion of vehicles.

4. A perspective-projective pinhole camera model is assumed.

5. It is assumed that at least one point feature, which is close to the road surface (low-

height), is successfully tracked for each vehicle.

6. Absence of long shadows

Out of these assumptions, the first two assumptions are reasonable in case of vehicles trav-

eling on a highway. The fourth assumption, which appears to be a strong one, is found to

be satisfied in practice. The last assumption has been made for convenience. The issue of

detecting and suppressing static as well as moving shadows has been postponed for future

work.



Appendix C

Mapping error as the function of height

from road surface
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Figure C.1: Mapping erroreas the function ofZ

Consider a pointP in the scene with its ground projectionPg. Pg is at a distanced from

the base of the camera.ZP andZc are distances ofP andC respectively from the ground

plane. Assuming (erroneously) that all the points lie on theroad surface, the image ofP is

assumed to correspond with the world pointPP.
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d+e
Zc

=
d

Zc−ZP

e =
ZP d

Zc−ZP

The error due to violation of the planar motion assumption increases with the distance of a

point from the road surface and the distance between that point and the camera measured

along the road surface. Differentiating above equation with respect toZP yields:

∂e
∂ZP

=
Zc d

(Zc− ZP)2
(C.1)
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